基于Gram-Schmidt再正交化的小样本量问题判别公向量

Y. Wen, Lianghua He, Yue Lu
{"title":"基于Gram-Schmidt再正交化的小样本量问题判别公向量","authors":"Y. Wen, Lianghua He, Yue Lu","doi":"10.1109/ICASSP.2012.6288134","DOIUrl":null,"url":null,"abstract":"The discriminative common vectors (DCV) algorithm shows better face recognition effects than some commonly used linear discriminant algorithms, which uses the subspace methods and the Gram-Schmidt orthogonalization (GSO) procedure to obtain the DCV. However, the Gram-Schmidt technique may produce a set of vectors which is far from orthogonal so that sometimes the orthogonality may be lost completely. Hence, the effectiveness of the DCV is also decreased. In this paper, we proposed an improved DCV method based on the GSO. For obtaining an accurate projection onto the corresponding space, the orthogonal basis problem is usually solved with the Gram-Schmidt process with reorthogonalization. Thus, the effectiveness of the DCV can be improved and the experimental results show that the proposed method is better for the small sample size problem as compared to the DCV.","PeriodicalId":6443,"journal":{"name":"2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2012-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Discriminative common vectors based on the Gram-Schmidt reorthogonalization for the small sample size problem\",\"authors\":\"Y. Wen, Lianghua He, Yue Lu\",\"doi\":\"10.1109/ICASSP.2012.6288134\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The discriminative common vectors (DCV) algorithm shows better face recognition effects than some commonly used linear discriminant algorithms, which uses the subspace methods and the Gram-Schmidt orthogonalization (GSO) procedure to obtain the DCV. However, the Gram-Schmidt technique may produce a set of vectors which is far from orthogonal so that sometimes the orthogonality may be lost completely. Hence, the effectiveness of the DCV is also decreased. In this paper, we proposed an improved DCV method based on the GSO. For obtaining an accurate projection onto the corresponding space, the orthogonal basis problem is usually solved with the Gram-Schmidt process with reorthogonalization. Thus, the effectiveness of the DCV can be improved and the experimental results show that the proposed method is better for the small sample size problem as compared to the DCV.\",\"PeriodicalId\":6443,\"journal\":{\"name\":\"2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICASSP.2012.6288134\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2012.6288134","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

判别公向量(discriminative common vector, DCV)算法采用子空间方法和Gram-Schmidt正交化(GSO)方法得到的判别公向量(discriminative common vector, DCV)算法,其人脸识别效果优于一些常用的线性判别算法。然而,Gram-Schmidt技术可能产生一组远离正交的向量,以至于有时会完全失去正交性。因此,DCV的有效性也降低了。在本文中,我们提出了一种基于GSO的改进DCV方法。为了得到相应空间上的精确投影,正交基问题通常采用重新正交化的Gram-Schmidt过程来解决。实验结果表明,该方法比DCV方法更适合小样本量问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Discriminative common vectors based on the Gram-Schmidt reorthogonalization for the small sample size problem
The discriminative common vectors (DCV) algorithm shows better face recognition effects than some commonly used linear discriminant algorithms, which uses the subspace methods and the Gram-Schmidt orthogonalization (GSO) procedure to obtain the DCV. However, the Gram-Schmidt technique may produce a set of vectors which is far from orthogonal so that sometimes the orthogonality may be lost completely. Hence, the effectiveness of the DCV is also decreased. In this paper, we proposed an improved DCV method based on the GSO. For obtaining an accurate projection onto the corresponding space, the orthogonal basis problem is usually solved with the Gram-Schmidt process with reorthogonalization. Thus, the effectiveness of the DCV can be improved and the experimental results show that the proposed method is better for the small sample size problem as compared to the DCV.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Scalable Multilevel Quantization for Distributed Detection Linear Model-Based Intra Prediction in VVC Test Model Practical Concentric Open Sphere Cardioid Microphone Array Design for Higher Order Sound Field Capture Embedding Physical Augmentation and Wavelet Scattering Transform to Generative Adversarial Networks for Audio Classification with Limited Training Resources Improving ASR Robustness to Perturbed Speech Using Cycle-consistent Generative Adversarial Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1