揭示Ni纳米晶中缺陷诱导的自旋紊乱

M. Bersweiler, Evelyn Pratami Sinaga, I. Peral, N. Adachi, P. Bender, N. Steinke, E. Gilbert, Y. Todaka, A. Michels, Y. Oba
{"title":"揭示Ni纳米晶中缺陷诱导的自旋紊乱","authors":"M. Bersweiler, Evelyn Pratami Sinaga, I. Peral, N. Adachi, P. Bender, N. Steinke, E. Gilbert, Y. Todaka, A. Michels, Y. Oba","doi":"10.1103/PHYSREVMATERIALS.5.044409","DOIUrl":null,"url":null,"abstract":"We use magnetic small-angle neutron scattering to study the magnetic microstructure of a nanocrystalline Ni bulk sample, which was prepared by straining via high-pressure torsion. The neutron data reveal that the scattering is strongly affected by the high density of crystal defects inside the sample, which were created by the severe plastic deformation during the sample preparation. The defects cause a significant spin-misalignment scattering contribution. The corresponding magnetic correlation length, which characterizes the spatial magnetization fluctuations in real space, indicates an average defect size of 11 nm. In the remanent state, the stray fields around the defects cause spin disorder in the surrounding ferromagnetic bulk, with a penetration depth of around 22 nm. The range and amplitude of the disorder is systematically suppressed by an increasing external magnetic field. Our findings are supported by micromagnetic simulations, which, for the particular case of nonmagnetic defects (holes) embedded in a ferromagnetic Ni phase, further highlight the role of localized spin perturbations for the magnetic microstructure of defect-rich magnets such as high-pressure torsion materials.","PeriodicalId":8465,"journal":{"name":"arXiv: Mesoscale and Nanoscale Physics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Revealing defect-induced spin disorder in nanocrystalline Ni\",\"authors\":\"M. Bersweiler, Evelyn Pratami Sinaga, I. Peral, N. Adachi, P. Bender, N. Steinke, E. Gilbert, Y. Todaka, A. Michels, Y. Oba\",\"doi\":\"10.1103/PHYSREVMATERIALS.5.044409\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We use magnetic small-angle neutron scattering to study the magnetic microstructure of a nanocrystalline Ni bulk sample, which was prepared by straining via high-pressure torsion. The neutron data reveal that the scattering is strongly affected by the high density of crystal defects inside the sample, which were created by the severe plastic deformation during the sample preparation. The defects cause a significant spin-misalignment scattering contribution. The corresponding magnetic correlation length, which characterizes the spatial magnetization fluctuations in real space, indicates an average defect size of 11 nm. In the remanent state, the stray fields around the defects cause spin disorder in the surrounding ferromagnetic bulk, with a penetration depth of around 22 nm. The range and amplitude of the disorder is systematically suppressed by an increasing external magnetic field. Our findings are supported by micromagnetic simulations, which, for the particular case of nonmagnetic defects (holes) embedded in a ferromagnetic Ni phase, further highlight the role of localized spin perturbations for the magnetic microstructure of defect-rich magnets such as high-pressure torsion materials.\",\"PeriodicalId\":8465,\"journal\":{\"name\":\"arXiv: Mesoscale and Nanoscale Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Mesoscale and Nanoscale Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1103/PHYSREVMATERIALS.5.044409\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Mesoscale and Nanoscale Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/PHYSREVMATERIALS.5.044409","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

利用磁小角中子散射研究了高压扭应变法制备的纳米晶镍体样品的磁性微观结构。中子数据表明,样品内部高密度的晶体缺陷对散射有强烈的影响,这些缺陷是由样品制备过程中剧烈的塑性变形造成的。这些缺陷导致了显著的自旋失调散射贡献。对应的磁相关长度表征了实际空间中的空间磁化波动,表明缺陷的平均尺寸为11 nm。在剩余状态下,缺陷周围的杂散场导致周围铁磁体的自旋无序,穿透深度约为22 nm。紊乱的范围和幅度被一个增大的外磁场系统地抑制。我们的发现得到了微磁模拟的支持,对于嵌入铁磁Ni相的非磁性缺陷(孔)的特殊情况,进一步强调了局部自旋微扰对富含缺陷的磁体(如高压扭转材料)的磁性微观结构的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Revealing defect-induced spin disorder in nanocrystalline Ni
We use magnetic small-angle neutron scattering to study the magnetic microstructure of a nanocrystalline Ni bulk sample, which was prepared by straining via high-pressure torsion. The neutron data reveal that the scattering is strongly affected by the high density of crystal defects inside the sample, which were created by the severe plastic deformation during the sample preparation. The defects cause a significant spin-misalignment scattering contribution. The corresponding magnetic correlation length, which characterizes the spatial magnetization fluctuations in real space, indicates an average defect size of 11 nm. In the remanent state, the stray fields around the defects cause spin disorder in the surrounding ferromagnetic bulk, with a penetration depth of around 22 nm. The range and amplitude of the disorder is systematically suppressed by an increasing external magnetic field. Our findings are supported by micromagnetic simulations, which, for the particular case of nonmagnetic defects (holes) embedded in a ferromagnetic Ni phase, further highlight the role of localized spin perturbations for the magnetic microstructure of defect-rich magnets such as high-pressure torsion materials.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A driven fractal network: Possible route to efficient thermoelectric application Double Electron Spin Resonance of Engineered Atomic Structures on a Surface Reconfigurable Training, Vortex Writing and Spin-Wave Fingerprinting in an Artificial Spin-Vortex Ice Data mining, dashboards and statistics: a powerful framework for the chemical design of molecular nanomagnets Observation of electrically tunable Feshbach resonances in twisted bilayer semiconductors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1