{"title":"数据流计算理论:走向何方","authors":"S. Muthukrishnan","doi":"10.1145/1989284.1989314","DOIUrl":null,"url":null,"abstract":"Computing power has been growing steadily, just as communication rate and memory size. Simultaneously our ability to create data has been growing phenomenally and therefore the need to analyze it. We now have examples of massive data streams that are created in far higher rate than we can capture and store in memory economically, gathered in far more quantity than can be transported to central databases without overwhelming the communication infrastructure, and arrives far faster than we can compute with them in a sophisticated way.\n This phenomenon has challenged how we store, communicate and compute with data. Theories developed over past 50 years have relied on full capture, storage and communication of data. Instead, what we need for managing modern massive data streams are new methods built around working with less. The past 10 years have seen new theories emerge in computing (data stream algorithms), communication (compressed sensing), databases (data stream management systems) and other areas to address the challenges of massive data streams. Still, lot remains open and new applications of massive data streams have emerged recently. We present an overview of these challenges.","PeriodicalId":92118,"journal":{"name":"Proceedings of the ... ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems. ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems","volume":"9 1","pages":"317-319"},"PeriodicalIF":0.0000,"publicationDate":"2011-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Theory of data stream computing: where to go\",\"authors\":\"S. Muthukrishnan\",\"doi\":\"10.1145/1989284.1989314\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Computing power has been growing steadily, just as communication rate and memory size. Simultaneously our ability to create data has been growing phenomenally and therefore the need to analyze it. We now have examples of massive data streams that are created in far higher rate than we can capture and store in memory economically, gathered in far more quantity than can be transported to central databases without overwhelming the communication infrastructure, and arrives far faster than we can compute with them in a sophisticated way.\\n This phenomenon has challenged how we store, communicate and compute with data. Theories developed over past 50 years have relied on full capture, storage and communication of data. Instead, what we need for managing modern massive data streams are new methods built around working with less. The past 10 years have seen new theories emerge in computing (data stream algorithms), communication (compressed sensing), databases (data stream management systems) and other areas to address the challenges of massive data streams. Still, lot remains open and new applications of massive data streams have emerged recently. We present an overview of these challenges.\",\"PeriodicalId\":92118,\"journal\":{\"name\":\"Proceedings of the ... ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems. ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems\",\"volume\":\"9 1\",\"pages\":\"317-319\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the ... ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems. ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1989284.1989314\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems. ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1989284.1989314","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

计算能力一直在稳步增长,就像通信速率和内存大小一样。与此同时,我们创造数据的能力也在惊人地增长,因此分析数据的需求也在增长。我们现在有大量数据流的例子,这些数据流的创建速度远远超过我们经济地捕获和存储在内存中的速度,收集的数据量远远超过在不压倒通信基础设施的情况下传输到中央数据库的速度,并且到达的速度远远超过我们以复杂的方式计算它们的速度。这一现象对我们存储、交流和计算数据的方式提出了挑战。过去50年发展起来的理论依赖于对数据的充分捕捉、存储和交流。相反,我们管理现代海量数据流所需要的是围绕“少用”构建的新方法。在过去的10年里,新的理论在计算(数据流算法)、通信(压缩感知)、数据库(数据流管理系统)和其他领域出现,以应对海量数据流的挑战。尽管如此,大量数据流的新应用最近出现了。我们将概述这些挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Theory of data stream computing: where to go
Computing power has been growing steadily, just as communication rate and memory size. Simultaneously our ability to create data has been growing phenomenally and therefore the need to analyze it. We now have examples of massive data streams that are created in far higher rate than we can capture and store in memory economically, gathered in far more quantity than can be transported to central databases without overwhelming the communication infrastructure, and arrives far faster than we can compute with them in a sophisticated way. This phenomenon has challenged how we store, communicate and compute with data. Theories developed over past 50 years have relied on full capture, storage and communication of data. Instead, what we need for managing modern massive data streams are new methods built around working with less. The past 10 years have seen new theories emerge in computing (data stream algorithms), communication (compressed sensing), databases (data stream management systems) and other areas to address the challenges of massive data streams. Still, lot remains open and new applications of massive data streams have emerged recently. We present an overview of these challenges.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.40
自引率
0.00%
发文量
0
期刊最新文献
Subspace exploration: Bounds on Projected Frequency Estimation. PODS'21: Proceedings of the 40th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems, Virtual Event, China, June 20-25, 2021 Computing Optimal Repairs for Functional Dependencies. Relational database behavior: utilizing relational discrete event systems and models Data Citation: a Computational Challenge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1