废油生物柴油冷流特性研究及改进

Xiu Chen, Y. Yuan, Y. Lai
{"title":"废油生物柴油冷流特性研究及改进","authors":"Xiu Chen, Y. Yuan, Y. Lai","doi":"10.1109/RSETE.2011.5965086","DOIUrl":null,"url":null,"abstract":"The cold flow properties of waste oil biodiesel (WME) were studied by gas chromatography-mass spectrometry (GC-MS), multifunctional low temperature tester, differential scanning calorimetry (DSC) and solution crystallization theory. Three approaches for reducing cold filter plugging point (CFPP) of WME were investigated: crystallization fractionation, blending with winter petrodiesel and treating with cold flow improver (CFI) additives. A good correlation model was proposed for prediction CFPP by WME blending ratio. The study shows that the WME was mainly composed of fatty acid methyl esters (FAME): C<inf>14∶0</inf>–C<inf>22∶0</inf>, C<inf>16∶1</inf>–C<inf>22∶1</inf>, C<inf>18∶2</inf> and C<inf>18∶3</inf>. The mass fraction of saturated fatty acid methyl esters (SFAME) and unsaturated fatty acid methyl esters (UFAME) was 31.04% and 64.51%, respectively. The CFPP of WME was 3 °C. Crystallization fractionation and blending with −10 petrodiesel (−10PD) decreased the CFPP to −2 and −12 °C respectively. Treating with CFI additives (volume fraction ≤ 0.5%) decreased the CFPP of WME and WME/−10PD to −1 and −26 °C, respectively. This study has effectively improved cold flow properties of WME and provided guide for using WME during cold weather.","PeriodicalId":6296,"journal":{"name":"2011 International Conference on Remote Sensing, Environment and Transportation Engineering","volume":"21 1","pages":"3516-3519"},"PeriodicalIF":0.0000,"publicationDate":"2011-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Study on cold flow properties of waste oil biodiesel and improvement\",\"authors\":\"Xiu Chen, Y. Yuan, Y. Lai\",\"doi\":\"10.1109/RSETE.2011.5965086\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The cold flow properties of waste oil biodiesel (WME) were studied by gas chromatography-mass spectrometry (GC-MS), multifunctional low temperature tester, differential scanning calorimetry (DSC) and solution crystallization theory. Three approaches for reducing cold filter plugging point (CFPP) of WME were investigated: crystallization fractionation, blending with winter petrodiesel and treating with cold flow improver (CFI) additives. A good correlation model was proposed for prediction CFPP by WME blending ratio. The study shows that the WME was mainly composed of fatty acid methyl esters (FAME): C<inf>14∶0</inf>–C<inf>22∶0</inf>, C<inf>16∶1</inf>–C<inf>22∶1</inf>, C<inf>18∶2</inf> and C<inf>18∶3</inf>. The mass fraction of saturated fatty acid methyl esters (SFAME) and unsaturated fatty acid methyl esters (UFAME) was 31.04% and 64.51%, respectively. The CFPP of WME was 3 °C. Crystallization fractionation and blending with −10 petrodiesel (−10PD) decreased the CFPP to −2 and −12 °C respectively. Treating with CFI additives (volume fraction ≤ 0.5%) decreased the CFPP of WME and WME/−10PD to −1 and −26 °C, respectively. This study has effectively improved cold flow properties of WME and provided guide for using WME during cold weather.\",\"PeriodicalId\":6296,\"journal\":{\"name\":\"2011 International Conference on Remote Sensing, Environment and Transportation Engineering\",\"volume\":\"21 1\",\"pages\":\"3516-3519\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 International Conference on Remote Sensing, Environment and Transportation Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RSETE.2011.5965086\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 International Conference on Remote Sensing, Environment and Transportation Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RSETE.2011.5965086","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

采用气相色谱-质谱(GC-MS)、多功能低温测试仪、差示扫描量热法(DSC)和溶液结晶理论对废油生物柴油(WME)的冷流动特性进行了研究。采用结晶分馏、与冬季石油柴油共混、添加冷流改进剂等3种方法降低冷滤芯堵塞点。提出了一种较好的WME混合比预测CFPP的相关模型。研究表明,WME主要由脂肪酸甲酯(FAME)组成:C14∶0 ~ c22∶0、C16∶1 ~ c22∶1、C18∶2和C18∶3。饱和脂肪酸甲酯(SFAME)和不饱和脂肪酸甲酯(UFAME)的质量分数分别为31.04%和64.51%。WME的CFPP为3°C。结晶分馏和与- 10石油柴油(- 10PD)共混使CFPP分别降至- 2℃和- 12℃。CFI添加剂(体积分数≤0.5%)使WME和WME/ - 10PD的CFPP分别降至- 1和- 26°C。该研究有效地改善了WME的冷流性能,为在寒冷天气下使用WME提供了指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Study on cold flow properties of waste oil biodiesel and improvement
The cold flow properties of waste oil biodiesel (WME) were studied by gas chromatography-mass spectrometry (GC-MS), multifunctional low temperature tester, differential scanning calorimetry (DSC) and solution crystallization theory. Three approaches for reducing cold filter plugging point (CFPP) of WME were investigated: crystallization fractionation, blending with winter petrodiesel and treating with cold flow improver (CFI) additives. A good correlation model was proposed for prediction CFPP by WME blending ratio. The study shows that the WME was mainly composed of fatty acid methyl esters (FAME): C14∶0–C22∶0, C16∶1–C22∶1, C18∶2 and C18∶3. The mass fraction of saturated fatty acid methyl esters (SFAME) and unsaturated fatty acid methyl esters (UFAME) was 31.04% and 64.51%, respectively. The CFPP of WME was 3 °C. Crystallization fractionation and blending with −10 petrodiesel (−10PD) decreased the CFPP to −2 and −12 °C respectively. Treating with CFI additives (volume fraction ≤ 0.5%) decreased the CFPP of WME and WME/−10PD to −1 and −26 °C, respectively. This study has effectively improved cold flow properties of WME and provided guide for using WME during cold weather.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Effect of the preheating temperature and polarization treatment on the electrical properties of 0–3 PZT/IPN piezoelectric composites Biodistribution of curcumin and its derivatives new aspects for curcumin administration Characterization of microbial community structure of anaerobic baffled reactor-integrated oxidation ditch-biological aerated filter for landfill leachate treatment Identification of gale weather with doppler weather radar data Domestication of strain SYSHHJ1 and its biodegradation of cyclohexane
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1