{"title":"注意感知多实例神经网络","authors":"Jingjun Yi, Beichen Zhou","doi":"10.48550/arXiv.2205.13750","DOIUrl":null,"url":null,"abstract":"Multiple instance learning is qualified for many pattern recognition tasks with weakly annotated data. The combination of artificial neural network and multiple instance learning offers an end-to-end solution and has been widely utilized. However, challenges remain in two-folds. Firstly, current MIL pooling operators are usually pre-defined and lack flexibility to mine key instances. Secondly, in current solutions, the bag-level representation can be inaccurate or inaccessible. To this end, we propose an attention awareness multiple instance neural network framework in this paper. It consists of an instance-level classifier, a trainable MIL pooling operator based on spatial attention and a bag-level classification layer. Exhaustive experiments on a series of pattern recognition tasks demonstrate that our framework outperforms many state-of-the-art MIL methods and val-idates the effectiveness of our proposed attention MIL pooling operators.","PeriodicalId":93416,"journal":{"name":"Artificial neural networks, ICANN : international conference ... proceedings. International Conference on Artificial Neural Networks (European Neural Network Society)","volume":"127 1","pages":"581-592"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Attention Awareness Multiple Instance Neural Network\",\"authors\":\"Jingjun Yi, Beichen Zhou\",\"doi\":\"10.48550/arXiv.2205.13750\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multiple instance learning is qualified for many pattern recognition tasks with weakly annotated data. The combination of artificial neural network and multiple instance learning offers an end-to-end solution and has been widely utilized. However, challenges remain in two-folds. Firstly, current MIL pooling operators are usually pre-defined and lack flexibility to mine key instances. Secondly, in current solutions, the bag-level representation can be inaccurate or inaccessible. To this end, we propose an attention awareness multiple instance neural network framework in this paper. It consists of an instance-level classifier, a trainable MIL pooling operator based on spatial attention and a bag-level classification layer. Exhaustive experiments on a series of pattern recognition tasks demonstrate that our framework outperforms many state-of-the-art MIL methods and val-idates the effectiveness of our proposed attention MIL pooling operators.\",\"PeriodicalId\":93416,\"journal\":{\"name\":\"Artificial neural networks, ICANN : international conference ... proceedings. International Conference on Artificial Neural Networks (European Neural Network Society)\",\"volume\":\"127 1\",\"pages\":\"581-592\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Artificial neural networks, ICANN : international conference ... proceedings. International Conference on Artificial Neural Networks (European Neural Network Society)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2205.13750\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial neural networks, ICANN : international conference ... proceedings. International Conference on Artificial Neural Networks (European Neural Network Society)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2205.13750","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

多实例学习适用于许多带有弱标注数据的模式识别任务。人工神经网络与多实例学习的结合提供了端到端的解决方案,并得到了广泛的应用。然而,挑战仍然存在于两方面。首先,当前的MIL池操作符通常是预定义的,缺乏挖掘关键实例的灵活性。其次,在当前的解决方案中,包级表示可能不准确或不可访问。为此,本文提出了一种注意力感知多实例神经网络框架。它由实例级分类器、基于空间注意的可训练MIL池化算子和袋级分类层组成。在一系列模式识别任务上的详尽实验表明,我们的框架优于许多最先进的MIL方法,并验证了我们提出的注意力MIL池算子的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Attention Awareness Multiple Instance Neural Network
Multiple instance learning is qualified for many pattern recognition tasks with weakly annotated data. The combination of artificial neural network and multiple instance learning offers an end-to-end solution and has been widely utilized. However, challenges remain in two-folds. Firstly, current MIL pooling operators are usually pre-defined and lack flexibility to mine key instances. Secondly, in current solutions, the bag-level representation can be inaccurate or inaccessible. To this end, we propose an attention awareness multiple instance neural network framework in this paper. It consists of an instance-level classifier, a trainable MIL pooling operator based on spatial attention and a bag-level classification layer. Exhaustive experiments on a series of pattern recognition tasks demonstrate that our framework outperforms many state-of-the-art MIL methods and val-idates the effectiveness of our proposed attention MIL pooling operators.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Dual Branch Network Towards Accurate Printed Mathematical Expression Recognition PE-YOLO: Pyramid Enhancement Network for Dark Object Detection Variational Autoencoders for Anomaly Detection in Respiratory Sounds Deep Feature Learning for Medical Acoustics Time Series Forecasting Models Copy the Past: How to Mitigate
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1