利用树皮纹理识别沙漠植物

Najlaa Alsaedi, Hanan Alahmadi, Liyakathunisa Syed
{"title":"利用树皮纹理识别沙漠植物","authors":"Najlaa Alsaedi, Hanan Alahmadi, Liyakathunisa Syed","doi":"10.1109/DeSE.2019.00032","DOIUrl":null,"url":null,"abstract":"Recognition of the desert plants is a challenging task for human as well as computers due to the similarities between these plants. We propose a novel method for recognizing of desert plants by the images of the bark. We extract the features of the texture of the bark using Weber Local Descriptor (WLD), we build a dataset of bark images for desert plants, this dataset consists of 1660 bark images for five species of the desert plants, these species are Palm Dates, Mimosa Scabrella, Sidr, Lemon and Pomegranate. We test three classifiers ANN, SVM and KNN on this dataset and the resulted accuracies are 99.7%, 98.8% and 98.0%, respectively. Performance of ANN is very high when compared to SVM and KNN classifiers, hence ANN can be adapted for recognition of the desert plants.","PeriodicalId":6632,"journal":{"name":"2019 12th International Conference on Developments in eSystems Engineering (DeSE)","volume":"86 1","pages":"123-127"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Desert Plants Recognition by Bark Texture\",\"authors\":\"Najlaa Alsaedi, Hanan Alahmadi, Liyakathunisa Syed\",\"doi\":\"10.1109/DeSE.2019.00032\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recognition of the desert plants is a challenging task for human as well as computers due to the similarities between these plants. We propose a novel method for recognizing of desert plants by the images of the bark. We extract the features of the texture of the bark using Weber Local Descriptor (WLD), we build a dataset of bark images for desert plants, this dataset consists of 1660 bark images for five species of the desert plants, these species are Palm Dates, Mimosa Scabrella, Sidr, Lemon and Pomegranate. We test three classifiers ANN, SVM and KNN on this dataset and the resulted accuracies are 99.7%, 98.8% and 98.0%, respectively. Performance of ANN is very high when compared to SVM and KNN classifiers, hence ANN can be adapted for recognition of the desert plants.\",\"PeriodicalId\":6632,\"journal\":{\"name\":\"2019 12th International Conference on Developments in eSystems Engineering (DeSE)\",\"volume\":\"86 1\",\"pages\":\"123-127\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 12th International Conference on Developments in eSystems Engineering (DeSE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DeSE.2019.00032\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 12th International Conference on Developments in eSystems Engineering (DeSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DeSE.2019.00032","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

由于这些植物之间的相似性,识别沙漠植物对人类和计算机来说都是一项具有挑战性的任务。提出了一种利用树皮图像识别荒漠植物的新方法。利用Weber局部描述符(WLD)提取树皮的纹理特征,构建了沙漠植物树皮图像数据集,该数据集包含5种沙漠植物的1660张树皮图像,这5种植物分别是棕榈枣、含水草、Sidr、柠檬和石榴。我们在该数据集上测试了ANN、SVM和KNN三种分类器,结果准确率分别为99.7%、98.8%和98.0%。与支持向量机(SVM)和KNN分类器相比,人工神经网络(ANN)的分类性能非常高,因此可以用于沙漠植物的识别。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Desert Plants Recognition by Bark Texture
Recognition of the desert plants is a challenging task for human as well as computers due to the similarities between these plants. We propose a novel method for recognizing of desert plants by the images of the bark. We extract the features of the texture of the bark using Weber Local Descriptor (WLD), we build a dataset of bark images for desert plants, this dataset consists of 1660 bark images for five species of the desert plants, these species are Palm Dates, Mimosa Scabrella, Sidr, Lemon and Pomegranate. We test three classifiers ANN, SVM and KNN on this dataset and the resulted accuracies are 99.7%, 98.8% and 98.0%, respectively. Performance of ANN is very high when compared to SVM and KNN classifiers, hence ANN can be adapted for recognition of the desert plants.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fresh and Mechanical Properties of Self-Compacting Lightweight Concrete Containing Ponza Aggregates LPLian: Angle-Constrained Path Finding in Dynamic Grids The Sentiment Analysis of Unstructured Social Network Data Using the Extended Ontology SentiWordNet Investigation of IDC Structures for Graphene Based Biosensors Using Low Frequency EIS Method Comparing Unsupervised Layers in Neural Networks for Financial Time Series Prediction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1