{"title":"改性炭黑对降低炭黑填充胶料填料间相互作用及滞回损失的影响","authors":"Nitya Narayan Kunti, R. Sengupta","doi":"10.1177/14777606221145699","DOIUrl":null,"url":null,"abstract":"The carbon black, used in rubber compound as reinforcing filler, improves the strength, durability, and wear resistance of the rubber compound. However, it causes filler-filler interaction and results in extensive hysteresis energy losses on deformation. This research aims to reduce hysteresis energy loss of rubber compound by reducing filler-filler interaction and by improving the filler dispersion in rubber matrix. In this study, the effect of carbon black treated with benzyl tri-ethyl ammonium chloride (BTEAC) on solution styrene butadiene rubber and butadiene rubber (SSBR-BR) system was studied. Microscopic study of dispersion and distribution of carbon black in rubber matrix was performed and a significant improvement in dispersion of BTEAC treated carbon black in SSBR-BR rubber matrix was observed. As a result of increased interaction of BTEAC treated carbon black with rubber, the filler - filler interaction was significantly reduced, resulting lower hysteresis energy loss of the compound as expressed by loss tangent (tanδ) value and it has been observed that an extent of around 15% reduction in tanδ value was achieved in rubber compound consisting of BTEAC treated carbon black. In this research, the carbon black was treated with different concentration of BTEAC, such as 0.5%, 1% and 1.5% and the best balance of rubber properties was observed for 1% and 1.5% BTEAC treated carbon black.","PeriodicalId":20860,"journal":{"name":"Progress in Rubber Plastics and Recycling Technology","volume":"22 1","pages":"156 - 168"},"PeriodicalIF":1.1000,"publicationDate":"2022-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reduction of filler-filler interaction and hysteresis loss of carbon black filled rubber compound by using modified carbon Black\",\"authors\":\"Nitya Narayan Kunti, R. Sengupta\",\"doi\":\"10.1177/14777606221145699\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The carbon black, used in rubber compound as reinforcing filler, improves the strength, durability, and wear resistance of the rubber compound. However, it causes filler-filler interaction and results in extensive hysteresis energy losses on deformation. This research aims to reduce hysteresis energy loss of rubber compound by reducing filler-filler interaction and by improving the filler dispersion in rubber matrix. In this study, the effect of carbon black treated with benzyl tri-ethyl ammonium chloride (BTEAC) on solution styrene butadiene rubber and butadiene rubber (SSBR-BR) system was studied. Microscopic study of dispersion and distribution of carbon black in rubber matrix was performed and a significant improvement in dispersion of BTEAC treated carbon black in SSBR-BR rubber matrix was observed. As a result of increased interaction of BTEAC treated carbon black with rubber, the filler - filler interaction was significantly reduced, resulting lower hysteresis energy loss of the compound as expressed by loss tangent (tanδ) value and it has been observed that an extent of around 15% reduction in tanδ value was achieved in rubber compound consisting of BTEAC treated carbon black. In this research, the carbon black was treated with different concentration of BTEAC, such as 0.5%, 1% and 1.5% and the best balance of rubber properties was observed for 1% and 1.5% BTEAC treated carbon black.\",\"PeriodicalId\":20860,\"journal\":{\"name\":\"Progress in Rubber Plastics and Recycling Technology\",\"volume\":\"22 1\",\"pages\":\"156 - 168\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2022-12-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Rubber Plastics and Recycling Technology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1177/14777606221145699\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, COMPOSITES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Rubber Plastics and Recycling Technology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1177/14777606221145699","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
Reduction of filler-filler interaction and hysteresis loss of carbon black filled rubber compound by using modified carbon Black
The carbon black, used in rubber compound as reinforcing filler, improves the strength, durability, and wear resistance of the rubber compound. However, it causes filler-filler interaction and results in extensive hysteresis energy losses on deformation. This research aims to reduce hysteresis energy loss of rubber compound by reducing filler-filler interaction and by improving the filler dispersion in rubber matrix. In this study, the effect of carbon black treated with benzyl tri-ethyl ammonium chloride (BTEAC) on solution styrene butadiene rubber and butadiene rubber (SSBR-BR) system was studied. Microscopic study of dispersion and distribution of carbon black in rubber matrix was performed and a significant improvement in dispersion of BTEAC treated carbon black in SSBR-BR rubber matrix was observed. As a result of increased interaction of BTEAC treated carbon black with rubber, the filler - filler interaction was significantly reduced, resulting lower hysteresis energy loss of the compound as expressed by loss tangent (tanδ) value and it has been observed that an extent of around 15% reduction in tanδ value was achieved in rubber compound consisting of BTEAC treated carbon black. In this research, the carbon black was treated with different concentration of BTEAC, such as 0.5%, 1% and 1.5% and the best balance of rubber properties was observed for 1% and 1.5% BTEAC treated carbon black.
期刊介绍:
The journal aims to bridge the gap between research and development and the practical and commercial applications of polymers in a wide range of uses. Current developments and likely future trends are reviewed across key areas of the polymer industry, together with existing and potential opportunities for the innovative use of plastic and rubber products.