已实现波动率的非线性及预测性能

Daiki Maki
{"title":"已实现波动率的非线性及预测性能","authors":"Daiki Maki","doi":"10.1080/23737484.2023.2175277","DOIUrl":null,"url":null,"abstract":"Abstract This study examines whether accounting for the nonlinearity of realized volatility leads to better forecast performance. We propose a new realized volatility forecasting model that considers nonlinearities without the assumption of a particular nonlinear model. The proposed model uses the Taylor series approximation method to account for nonlinearities. We applied it to the realized volatility of representative stock indices from the U.S., Japan, the U.K., and China and observed their in-sample nonlinearities. Additionally, we evaluate out-of-sample forecast performance. The empirical results show that realized volatility has nonlinearity, and the proposed models exhibit better forecast performance than standard models.","PeriodicalId":36561,"journal":{"name":"Communications in Statistics Case Studies Data Analysis and Applications","volume":"252 1","pages":"51 - 71"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nonlinearity and forecast performance of realized volatility\",\"authors\":\"Daiki Maki\",\"doi\":\"10.1080/23737484.2023.2175277\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract This study examines whether accounting for the nonlinearity of realized volatility leads to better forecast performance. We propose a new realized volatility forecasting model that considers nonlinearities without the assumption of a particular nonlinear model. The proposed model uses the Taylor series approximation method to account for nonlinearities. We applied it to the realized volatility of representative stock indices from the U.S., Japan, the U.K., and China and observed their in-sample nonlinearities. Additionally, we evaluate out-of-sample forecast performance. The empirical results show that realized volatility has nonlinearity, and the proposed models exhibit better forecast performance than standard models.\",\"PeriodicalId\":36561,\"journal\":{\"name\":\"Communications in Statistics Case Studies Data Analysis and Applications\",\"volume\":\"252 1\",\"pages\":\"51 - 71\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Statistics Case Studies Data Analysis and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/23737484.2023.2175277\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Statistics Case Studies Data Analysis and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/23737484.2023.2175277","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

摘要本研究探讨考虑已实现波动率的非线性是否会导致更好的预测绩效。本文提出了一种新的考虑非线性因素的可实现波动率预测模型,而不需要假设特定的非线性模型。提出的模型使用泰勒级数近似方法来解释非线性。我们将其应用于美国、日本、英国和中国的代表性股票指数的已实现波动率,并观察了它们的样本内非线性。此外,我们评估样本外预测性能。实证结果表明,实际波动率具有非线性,所提模型的预测效果优于标准模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Nonlinearity and forecast performance of realized volatility
Abstract This study examines whether accounting for the nonlinearity of realized volatility leads to better forecast performance. We propose a new realized volatility forecasting model that considers nonlinearities without the assumption of a particular nonlinear model. The proposed model uses the Taylor series approximation method to account for nonlinearities. We applied it to the realized volatility of representative stock indices from the U.S., Japan, the U.K., and China and observed their in-sample nonlinearities. Additionally, we evaluate out-of-sample forecast performance. The empirical results show that realized volatility has nonlinearity, and the proposed models exhibit better forecast performance than standard models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.00
自引率
0.00%
发文量
29
期刊最新文献
The reciprocal elastic net Detection of influential observations in high-dimensional survival data Small area estimation of trends in household living standards in Uganda using a GMANOVA-MANOVA model and repeated surveys Applications of a new loss and cost-based process capability index to electronic industries A methodological framework for imputing missing spatial data at an aggregate level and guaranteeing data privacy: the AFFINITY method; implementation in the context of the official spatial Greek census data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1