基于强化学习的软机械臂无模型控制

Xuanke You, Yixiao Zhang, Xiaotong Chen, Xinghua Liu, Zhanchi Wang, Hao Jiang, Xiaoping Chen
{"title":"基于强化学习的软机械臂无模型控制","authors":"Xuanke You, Yixiao Zhang, Xiaotong Chen, Xinghua Liu, Zhanchi Wang, Hao Jiang, Xiaoping Chen","doi":"10.1109/IROS.2017.8206123","DOIUrl":null,"url":null,"abstract":"Most control methods of soft manipulators are developed based on physical models derived from mathematical analysis or learning methods. However, due to internal nonlinearity and external uncertain disturbances, it is difficult to build an accurate model, further, these methods lack robustness and portability among different prototypes. In this work, we propose a model-free control method based on reinforcement learning and implement it on a multi-segment soft manipulator in 2D plane, which focuses on the learning of control strategy rather than the physical model. The control strategy is validated to be effective and robust in prototype experiments, where we design a simulation method to speed up the training process.","PeriodicalId":6658,"journal":{"name":"2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)","volume":"6 1","pages":"2909-2915"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"41","resultStr":"{\"title\":\"Model-free control for soft manipulators based on reinforcement learning\",\"authors\":\"Xuanke You, Yixiao Zhang, Xiaotong Chen, Xinghua Liu, Zhanchi Wang, Hao Jiang, Xiaoping Chen\",\"doi\":\"10.1109/IROS.2017.8206123\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Most control methods of soft manipulators are developed based on physical models derived from mathematical analysis or learning methods. However, due to internal nonlinearity and external uncertain disturbances, it is difficult to build an accurate model, further, these methods lack robustness and portability among different prototypes. In this work, we propose a model-free control method based on reinforcement learning and implement it on a multi-segment soft manipulator in 2D plane, which focuses on the learning of control strategy rather than the physical model. The control strategy is validated to be effective and robust in prototype experiments, where we design a simulation method to speed up the training process.\",\"PeriodicalId\":6658,\"journal\":{\"name\":\"2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)\",\"volume\":\"6 1\",\"pages\":\"2909-2915\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"41\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IROS.2017.8206123\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IROS.2017.8206123","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 41

摘要

大多数软机械臂的控制方法都是基于数学分析或学习方法得出的物理模型。然而,由于内部非线性和外部不确定干扰,这些方法难以建立准确的模型,并且缺乏鲁棒性和不同原型之间的可移植性。本文提出了一种基于强化学习的无模型控制方法,并将其应用于二维平面上的多节段软机械臂,该方法侧重于控制策略的学习,而不是物理模型的学习。在原型实验中验证了控制策略的有效性和鲁棒性,并设计了一种仿真方法来加快训练过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Model-free control for soft manipulators based on reinforcement learning
Most control methods of soft manipulators are developed based on physical models derived from mathematical analysis or learning methods. However, due to internal nonlinearity and external uncertain disturbances, it is difficult to build an accurate model, further, these methods lack robustness and portability among different prototypes. In this work, we propose a model-free control method based on reinforcement learning and implement it on a multi-segment soft manipulator in 2D plane, which focuses on the learning of control strategy rather than the physical model. The control strategy is validated to be effective and robust in prototype experiments, where we design a simulation method to speed up the training process.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Direct visual SLAM fusing proprioception for a humanoid robot Upper limb motion intent recognition using tactile sensing Soft fluidic rotary actuator with improved actuation properties Underwater 3D structures as semantic landmarks in SONAR mapping Adaptive perception: Learning from sensory predictions to extract object shape with a biomimetic fingertip
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1