具有预计算的高效专用电路

Weijia Wang, Fanjie Ji, Juelin Zhang, Yu Yu
{"title":"具有预计算的高效专用电路","authors":"Weijia Wang, Fanjie Ji, Juelin Zhang, Yu Yu","doi":"10.46586/tches.v2023.i2.286-309","DOIUrl":null,"url":null,"abstract":"At CHES 2022, Wang et al. described a new paradigm for masked implementations using private circuits, where most intermediates can be precomputed before the input shares are accessed, significantly accelerating the online execution of masked functions. However, the masking scheme they proposed mainly featured (and was designed for) the cost amortization, leaving its (limited) suitability in the above precomputation-based paradigm just as a bonus. This paper aims to provide an efficient, reliable, easy-to-use, and precomputation-compatible masking scheme. We propose a new masked multiplication over the finite field Fq suitable for the precomputation, and prove its security in the composable notion called Probing-Isolating Non-Inference (PINI). Particularly, the operations (e.g., AND and XOR) in the binary field can be achieved by assigning q = 2, allowing the bitsliced implementation that has been shown to be quite efficient for the software implementations. The new masking scheme is applied to leverage the masking of AES and SKINNY block ciphers on ARM Cortex M architecture. The performance results show that the new scheme contributes to a significant speed-up compared with the state-of-the-art implementations. For SKINNY with block size 64, the speed and RAM requirement can be significantly improved (saving around 45% cycles in the online-computation and 60% RAM space for precomputed values) from AES-128, thanks to its smaller number of AND gates. Besides the security proof by hand, we provide formal verifications for the multiplication and T-test evaluations for the masked implementations of AES and SKINNY. Because of the structure of the new masked multiplication, our formal verification can be performed for security orders up to 16.","PeriodicalId":13186,"journal":{"name":"IACR Trans. Cryptogr. Hardw. Embed. Syst.","volume":"130 1","pages":"286-309"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Efficient Private Circuits with Precomputation\",\"authors\":\"Weijia Wang, Fanjie Ji, Juelin Zhang, Yu Yu\",\"doi\":\"10.46586/tches.v2023.i2.286-309\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"At CHES 2022, Wang et al. described a new paradigm for masked implementations using private circuits, where most intermediates can be precomputed before the input shares are accessed, significantly accelerating the online execution of masked functions. However, the masking scheme they proposed mainly featured (and was designed for) the cost amortization, leaving its (limited) suitability in the above precomputation-based paradigm just as a bonus. This paper aims to provide an efficient, reliable, easy-to-use, and precomputation-compatible masking scheme. We propose a new masked multiplication over the finite field Fq suitable for the precomputation, and prove its security in the composable notion called Probing-Isolating Non-Inference (PINI). Particularly, the operations (e.g., AND and XOR) in the binary field can be achieved by assigning q = 2, allowing the bitsliced implementation that has been shown to be quite efficient for the software implementations. The new masking scheme is applied to leverage the masking of AES and SKINNY block ciphers on ARM Cortex M architecture. The performance results show that the new scheme contributes to a significant speed-up compared with the state-of-the-art implementations. For SKINNY with block size 64, the speed and RAM requirement can be significantly improved (saving around 45% cycles in the online-computation and 60% RAM space for precomputed values) from AES-128, thanks to its smaller number of AND gates. Besides the security proof by hand, we provide formal verifications for the multiplication and T-test evaluations for the masked implementations of AES and SKINNY. Because of the structure of the new masked multiplication, our formal verification can be performed for security orders up to 16.\",\"PeriodicalId\":13186,\"journal\":{\"name\":\"IACR Trans. Cryptogr. Hardw. Embed. Syst.\",\"volume\":\"130 1\",\"pages\":\"286-309\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IACR Trans. Cryptogr. Hardw. Embed. Syst.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.46586/tches.v2023.i2.286-309\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IACR Trans. Cryptogr. Hardw. Embed. Syst.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46586/tches.v2023.i2.286-309","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在CHES 2022上,Wang等人描述了一种使用专用电路实现掩码的新范例,其中大多数中间体可以在访问输入共享之前预先计算,从而显着加快了掩码函数的在线执行。然而,他们提出的掩蔽方案主要以成本摊销为特征(并且是为之设计的),这使得其(有限的)适用性在上述基于预计算的范式中只是一个额外的好处。本文旨在提供一种高效、可靠、易于使用且与预计算兼容的掩码方案。我们提出了一种新的适用于预计算的有限域上的掩模乘法,并在可组合的概念中证明了它的安全性,称为探测隔离非推理(PINI)。特别是,二进制字段中的操作(例如,AND和异或)可以通过赋值q = 2来实现,从而允许对软件实现非常有效的位切片实现。在ARM Cortex M架构下,利用AES和SKINNY分组密码的掩码,提出了新的掩码方案。性能结果表明,与现有的实现方案相比,新方案具有显著的提速效果。对于块大小为64的SKINNY,由于其较少的and门数量,与AES-128相比,速度和RAM需求可以显著提高(在线计算节省约45%的周期,预先计算值节省60%的RAM空间)。除了手工安全性证明外,我们还为AES和SKINNY的掩码实现提供乘法和t检验评估的形式化验证。由于新的掩码乘法的结构,我们的形式验证可以对最多16个安全订单执行。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Efficient Private Circuits with Precomputation
At CHES 2022, Wang et al. described a new paradigm for masked implementations using private circuits, where most intermediates can be precomputed before the input shares are accessed, significantly accelerating the online execution of masked functions. However, the masking scheme they proposed mainly featured (and was designed for) the cost amortization, leaving its (limited) suitability in the above precomputation-based paradigm just as a bonus. This paper aims to provide an efficient, reliable, easy-to-use, and precomputation-compatible masking scheme. We propose a new masked multiplication over the finite field Fq suitable for the precomputation, and prove its security in the composable notion called Probing-Isolating Non-Inference (PINI). Particularly, the operations (e.g., AND and XOR) in the binary field can be achieved by assigning q = 2, allowing the bitsliced implementation that has been shown to be quite efficient for the software implementations. The new masking scheme is applied to leverage the masking of AES and SKINNY block ciphers on ARM Cortex M architecture. The performance results show that the new scheme contributes to a significant speed-up compared with the state-of-the-art implementations. For SKINNY with block size 64, the speed and RAM requirement can be significantly improved (saving around 45% cycles in the online-computation and 60% RAM space for precomputed values) from AES-128, thanks to its smaller number of AND gates. Besides the security proof by hand, we provide formal verifications for the multiplication and T-test evaluations for the masked implementations of AES and SKINNY. Because of the structure of the new masked multiplication, our formal verification can be performed for security orders up to 16.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
MMM: Authenticated Encryption with Minimum Secret State for Masking Don't Forget Pairing-Friendly Curves with Odd Prime Embedding Degrees LPN-based Attacks in the White-box Setting Enhancing Quality and Security of the PLL-TRNG Protecting Dilithium against Leakage Revisited Sensitivity Analysis and Improved Implementations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1