Paulo V. R. Gomes, R. N. Bonifácio, Barbara P. G. Silva, J. C. Ferreira, R. D. de Souza, L. Otubo, D. Lazar, A. O. Neto
{"title":"用非热等离子体系统在玻璃纤维上沉积石墨烯","authors":"Paulo V. R. Gomes, R. N. Bonifácio, Barbara P. G. Silva, J. C. Ferreira, R. D. de Souza, L. Otubo, D. Lazar, A. O. Neto","doi":"10.3390/eng4030119","DOIUrl":null,"url":null,"abstract":"This study reports a bottom-up approach for the conversion of cyclohexane into graphene nanoflakes, which were then deposited onto fiberglass using a non-thermal generator. The composite was characterized using transmission electron microscopy, which revealed the formation of stacked few-layer graphene with a partially disordered structure and a d-spacing of 0.358 nm between the layers. X-ray diffraction confirmed the observations from the TEM images. SEM images showed the agglomeration of carbonaceous material onto the fiberglass, which experienced some delamination due to the synthesis method. Raman spectroscopy indicated that the obtained graphene exhibited a predominance of defects in its structure. Additionally, atomic force microscopy (AFM) analyses revealed the formation of graphene layers with varying levels of porosity.","PeriodicalId":10630,"journal":{"name":"Comput. Chem. Eng.","volume":"29 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Graphene Deposited on Glass Fiber Using a Non-Thermal Plasma System\",\"authors\":\"Paulo V. R. Gomes, R. N. Bonifácio, Barbara P. G. Silva, J. C. Ferreira, R. D. de Souza, L. Otubo, D. Lazar, A. O. Neto\",\"doi\":\"10.3390/eng4030119\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study reports a bottom-up approach for the conversion of cyclohexane into graphene nanoflakes, which were then deposited onto fiberglass using a non-thermal generator. The composite was characterized using transmission electron microscopy, which revealed the formation of stacked few-layer graphene with a partially disordered structure and a d-spacing of 0.358 nm between the layers. X-ray diffraction confirmed the observations from the TEM images. SEM images showed the agglomeration of carbonaceous material onto the fiberglass, which experienced some delamination due to the synthesis method. Raman spectroscopy indicated that the obtained graphene exhibited a predominance of defects in its structure. Additionally, atomic force microscopy (AFM) analyses revealed the formation of graphene layers with varying levels of porosity.\",\"PeriodicalId\":10630,\"journal\":{\"name\":\"Comput. Chem. Eng.\",\"volume\":\"29 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-08-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Comput. Chem. Eng.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/eng4030119\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comput. Chem. Eng.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/eng4030119","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Graphene Deposited on Glass Fiber Using a Non-Thermal Plasma System
This study reports a bottom-up approach for the conversion of cyclohexane into graphene nanoflakes, which were then deposited onto fiberglass using a non-thermal generator. The composite was characterized using transmission electron microscopy, which revealed the formation of stacked few-layer graphene with a partially disordered structure and a d-spacing of 0.358 nm between the layers. X-ray diffraction confirmed the observations from the TEM images. SEM images showed the agglomeration of carbonaceous material onto the fiberglass, which experienced some delamination due to the synthesis method. Raman spectroscopy indicated that the obtained graphene exhibited a predominance of defects in its structure. Additionally, atomic force microscopy (AFM) analyses revealed the formation of graphene layers with varying levels of porosity.