Talita Evelin Nabarrete Tristão de Moraes, I. Previdelli, Giovani L. Silva
{"title":"巴西巴拉那州长期存活的乳腺癌数据的贝叶斯威布尔分析","authors":"Talita Evelin Nabarrete Tristão de Moraes, I. Previdelli, Giovani L. Silva","doi":"10.28951/rbb.v39i2.469","DOIUrl":null,"url":null,"abstract":"\n \n \nBreast cancer is one of the most common diseases among women worldwide with about 25% of new cases each year. In Brazil, 59,700 new cases of breast cancer were expected in 2019, according to the Brazilian National Cancer Institute (INCA). Survival analysis has been an useful tool for the identifying the risk and prognostic factors for cancer patients. This work aims to characterize the prognostic value of demographic, clinical and pathological variables in relation to the survival time of 2,092 patients diagnosed with breast cancer in Parana State, Brazil, from 2004 to 2016. In this sense, we propose a Bayesian analysis of survival data with long-term survivors by using Weibull regression models through integrated nested Laplace approximations (INLA). The results point to a proportion of long-term survivors around 57:6% in the population under study. In regard to potential risk factors, we namely concluded that 40-50 year age group has superior survival than younger and older age groups, white women have higher breast cancer risk than other races, and marital status decreases that risk. Caution on the general use of these results is nevertheless advised, since we have analyzed population-based breast cancer data without proper monitoring by a healthprofessional. \n \n \n","PeriodicalId":36293,"journal":{"name":"Revista Brasileira de Biometria","volume":"32 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A BAYESIAN WEIBULL ANALYSIS OF BREAST CANCER DATA WITH LONG-TERM SURVIVORS IN PARANA STATE, BRAZIL\",\"authors\":\"Talita Evelin Nabarrete Tristão de Moraes, I. Previdelli, Giovani L. Silva\",\"doi\":\"10.28951/rbb.v39i2.469\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n \\n \\nBreast cancer is one of the most common diseases among women worldwide with about 25% of new cases each year. In Brazil, 59,700 new cases of breast cancer were expected in 2019, according to the Brazilian National Cancer Institute (INCA). Survival analysis has been an useful tool for the identifying the risk and prognostic factors for cancer patients. This work aims to characterize the prognostic value of demographic, clinical and pathological variables in relation to the survival time of 2,092 patients diagnosed with breast cancer in Parana State, Brazil, from 2004 to 2016. In this sense, we propose a Bayesian analysis of survival data with long-term survivors by using Weibull regression models through integrated nested Laplace approximations (INLA). The results point to a proportion of long-term survivors around 57:6% in the population under study. In regard to potential risk factors, we namely concluded that 40-50 year age group has superior survival than younger and older age groups, white women have higher breast cancer risk than other races, and marital status decreases that risk. Caution on the general use of these results is nevertheless advised, since we have analyzed population-based breast cancer data without proper monitoring by a healthprofessional. \\n \\n \\n\",\"PeriodicalId\":36293,\"journal\":{\"name\":\"Revista Brasileira de Biometria\",\"volume\":\"32 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Revista Brasileira de Biometria\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.28951/rbb.v39i2.469\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista Brasileira de Biometria","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.28951/rbb.v39i2.469","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Medicine","Score":null,"Total":0}
A BAYESIAN WEIBULL ANALYSIS OF BREAST CANCER DATA WITH LONG-TERM SURVIVORS IN PARANA STATE, BRAZIL
Breast cancer is one of the most common diseases among women worldwide with about 25% of new cases each year. In Brazil, 59,700 new cases of breast cancer were expected in 2019, according to the Brazilian National Cancer Institute (INCA). Survival analysis has been an useful tool for the identifying the risk and prognostic factors for cancer patients. This work aims to characterize the prognostic value of demographic, clinical and pathological variables in relation to the survival time of 2,092 patients diagnosed with breast cancer in Parana State, Brazil, from 2004 to 2016. In this sense, we propose a Bayesian analysis of survival data with long-term survivors by using Weibull regression models through integrated nested Laplace approximations (INLA). The results point to a proportion of long-term survivors around 57:6% in the population under study. In regard to potential risk factors, we namely concluded that 40-50 year age group has superior survival than younger and older age groups, white women have higher breast cancer risk than other races, and marital status decreases that risk. Caution on the general use of these results is nevertheless advised, since we have analyzed population-based breast cancer data without proper monitoring by a healthprofessional.