球面等方参数化拉伸能量最小化的基本理论及r -线性收敛

IF 3.8 2区 数学 Q1 MATHEMATICS Journal of Numerical Mathematics Pub Date : 2023-08-24 DOI:10.1515/jnma-2022-0072
Tsung-Ming Huang, Wei-Hung Liao, Wen-Wei Lin
{"title":"球面等方参数化拉伸能量最小化的基本理论及r -线性收敛","authors":"Tsung-Ming Huang, Wei-Hung Liao, Wen-Wei Lin","doi":"10.1515/jnma-2022-0072","DOIUrl":null,"url":null,"abstract":"Abstract Here, we extend the finite distortion problem from bounded domains in ℝ2 to closed genus-zero surfaces in ℝ3 by a stereographic projection. Then, we derive a theoretical foundation for spherical equiareal parameterization between a simply connected closed surface M and a unit sphere 𝕊2 by minimizing the total area distortion energy on ̅ℂ. After the minimizer of the total area distortion energy is determined, it is combined with an initial conformal map to determine the equiareal map between the extended planes. From the inverse stereographic projection, we derive the equiareal map between M and 𝕊2. The total area distortion energy is rewritten into the sum of Dirichlet energies associated with the southern and northern hemispheres and is decreased by alternatingly solving the corresponding Laplacian equations. Based on this foundational theory, we develop a modified stretch energy minimization function for the computation of spherical equiareal parameterization between M and 𝕊2. In addition, under relatively mild conditions, we verify that our proposed algorithm has asymptotic R-linear convergence or forms a quasi-periodic solution. Numerical experiments on various benchmarks validate that the assumptions for convergence always hold and indicate the efficiency, reliability, and robustness of the developed modified stretch energy minimization function.","PeriodicalId":50109,"journal":{"name":"Journal of Numerical Mathematics","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2023-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fundamental Theory and R-linear Convergence of Stretch Energy Minimization for Spherical Equiareal Parameterization\",\"authors\":\"Tsung-Ming Huang, Wei-Hung Liao, Wen-Wei Lin\",\"doi\":\"10.1515/jnma-2022-0072\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Here, we extend the finite distortion problem from bounded domains in ℝ2 to closed genus-zero surfaces in ℝ3 by a stereographic projection. Then, we derive a theoretical foundation for spherical equiareal parameterization between a simply connected closed surface M and a unit sphere 𝕊2 by minimizing the total area distortion energy on ̅ℂ. After the minimizer of the total area distortion energy is determined, it is combined with an initial conformal map to determine the equiareal map between the extended planes. From the inverse stereographic projection, we derive the equiareal map between M and 𝕊2. The total area distortion energy is rewritten into the sum of Dirichlet energies associated with the southern and northern hemispheres and is decreased by alternatingly solving the corresponding Laplacian equations. Based on this foundational theory, we develop a modified stretch energy minimization function for the computation of spherical equiareal parameterization between M and 𝕊2. In addition, under relatively mild conditions, we verify that our proposed algorithm has asymptotic R-linear convergence or forms a quasi-periodic solution. Numerical experiments on various benchmarks validate that the assumptions for convergence always hold and indicate the efficiency, reliability, and robustness of the developed modified stretch energy minimization function.\",\"PeriodicalId\":50109,\"journal\":{\"name\":\"Journal of Numerical Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2023-08-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Numerical Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/jnma-2022-0072\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Numerical Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/jnma-2022-0072","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文通过一个立体投影,将有限畸变问题从有界域推广到闭属零曲面。在此基础上,通过最小化单位球面上的总面积畸变能量,给出了单连通封闭曲面M与单位球面𝕊2之间的球面等距参数化的理论基础。在确定了总面积变形能量的最小值后,将其与初始保角映射相结合,确定扩展平面之间的等边映射。从逆立体投影中,我们推导出M和𝕊2之间的等等映射。将总面积畸变能量改写为与南北半球相关的狄利克雷能量之和,并通过交替求解相应的拉普拉斯方程来减小。在此基础上,提出了一种改进的拉伸能量最小化函数,用于计算M和𝕊2之间的球面等参数化。此外,在相对温和的条件下,我们验证了我们提出的算法具有渐近r -线性收敛或形成拟周期解。在各种基准上的数值实验验证了收敛假设的成立,并表明了改进的拉伸能量最小化函数的有效性、可靠性和鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Fundamental Theory and R-linear Convergence of Stretch Energy Minimization for Spherical Equiareal Parameterization
Abstract Here, we extend the finite distortion problem from bounded domains in ℝ2 to closed genus-zero surfaces in ℝ3 by a stereographic projection. Then, we derive a theoretical foundation for spherical equiareal parameterization between a simply connected closed surface M and a unit sphere 𝕊2 by minimizing the total area distortion energy on ̅ℂ. After the minimizer of the total area distortion energy is determined, it is combined with an initial conformal map to determine the equiareal map between the extended planes. From the inverse stereographic projection, we derive the equiareal map between M and 𝕊2. The total area distortion energy is rewritten into the sum of Dirichlet energies associated with the southern and northern hemispheres and is decreased by alternatingly solving the corresponding Laplacian equations. Based on this foundational theory, we develop a modified stretch energy minimization function for the computation of spherical equiareal parameterization between M and 𝕊2. In addition, under relatively mild conditions, we verify that our proposed algorithm has asymptotic R-linear convergence or forms a quasi-periodic solution. Numerical experiments on various benchmarks validate that the assumptions for convergence always hold and indicate the efficiency, reliability, and robustness of the developed modified stretch energy minimization function.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.90
自引率
3.30%
发文量
17
审稿时长
>12 weeks
期刊介绍: The Journal of Numerical Mathematics (formerly East-West Journal of Numerical Mathematics) contains high-quality papers featuring contemporary research in all areas of Numerical Mathematics. This includes the development, analysis, and implementation of new and innovative methods in Numerical Linear Algebra, Numerical Analysis, Optimal Control/Optimization, and Scientific Computing. The journal will also publish applications-oriented papers with significant mathematical content in computational fluid dynamics and other areas of computational engineering, finance, and life sciences.
期刊最新文献
On the discrete Sobolev inequalities Stability and convergence of relaxed scalar auxiliary variable schemes for Cahn–Hilliard systems with bounded mass source Efficient numerical solution of the Fokker-Planck equation using physics-conforming finite element methods Fundamental Theory and R-linear Convergence of Stretch Energy Minimization for Spherical Equiareal Parameterization A posteriori error estimate for a WG method of H(curl)-elliptic problems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1