基于知识蒸馏的视频问答模型

Inf. Comput. Pub Date : 2023-06-12 DOI:10.3390/info14060328
Zhuang Shao, Jiahui Wan, Linlin Zong
{"title":"基于知识蒸馏的视频问答模型","authors":"Zhuang Shao, Jiahui Wan, Linlin Zong","doi":"10.3390/info14060328","DOIUrl":null,"url":null,"abstract":"Video question answering (QA) is a cross-modal task that requires understanding the video content to answer questions. Current techniques address this challenge by employing stacked modules, such as attention mechanisms and graph convolutional networks. These methods reason about the semantics of video features and their interaction with text-based questions, yielding excellent results. However, these approaches often learn and fuse features representing different aspects of the video separately, neglecting the intra-interaction and overlooking the latent complex correlations between the extracted features. Additionally, the stacking of modules introduces a large number of parameters, making model training more challenging. To address these issues, we propose a novel multimodal knowledge distillation method that leverages the strengths of knowledge distillation for model compression and feature enhancement. Specifically, the fused features in the larger teacher model are distilled into knowledge, which guides the learning of appearance and motion features in the smaller student model. By incorporating cross-modal information in the early stages, the appearance and motion features can discover their related and complementary potential relationships, thus improving the overall model performance. Despite its simplicity, our extensive experiments on the widely used video QA datasets, MSVD-QA and MSRVTT-QA, demonstrate clear performance improvements over prior methods. These results validate the effectiveness of the proposed knowledge distillation approach.","PeriodicalId":13622,"journal":{"name":"Inf. Comput.","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Video Question Answering Model Based on Knowledge Distillation\",\"authors\":\"Zhuang Shao, Jiahui Wan, Linlin Zong\",\"doi\":\"10.3390/info14060328\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Video question answering (QA) is a cross-modal task that requires understanding the video content to answer questions. Current techniques address this challenge by employing stacked modules, such as attention mechanisms and graph convolutional networks. These methods reason about the semantics of video features and their interaction with text-based questions, yielding excellent results. However, these approaches often learn and fuse features representing different aspects of the video separately, neglecting the intra-interaction and overlooking the latent complex correlations between the extracted features. Additionally, the stacking of modules introduces a large number of parameters, making model training more challenging. To address these issues, we propose a novel multimodal knowledge distillation method that leverages the strengths of knowledge distillation for model compression and feature enhancement. Specifically, the fused features in the larger teacher model are distilled into knowledge, which guides the learning of appearance and motion features in the smaller student model. By incorporating cross-modal information in the early stages, the appearance and motion features can discover their related and complementary potential relationships, thus improving the overall model performance. Despite its simplicity, our extensive experiments on the widely used video QA datasets, MSVD-QA and MSRVTT-QA, demonstrate clear performance improvements over prior methods. These results validate the effectiveness of the proposed knowledge distillation approach.\",\"PeriodicalId\":13622,\"journal\":{\"name\":\"Inf. Comput.\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Inf. Comput.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/info14060328\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inf. Comput.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/info14060328","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

视频问答(QA)是一个跨模态的任务,需要理解视频内容来回答问题。当前的技术通过使用堆叠模块来解决这一挑战,例如注意机制和图卷积网络。这些方法对视频特征的语义及其与基于文本的问题的交互进行了推理,产生了很好的结果。然而,这些方法往往分别学习和融合代表视频不同方面的特征,忽略了内部的相互作用,忽略了提取的特征之间潜在的复杂相关性。此外,模块的堆叠引入了大量参数,使模型训练更具挑战性。为了解决这些问题,我们提出了一种新的多模态知识蒸馏方法,利用知识蒸馏的优势进行模型压缩和特征增强。具体而言,将较大教师模型中融合的特征提炼为知识,指导较小学生模型中外观和动作特征的学习。通过在早期整合跨模态信息,外观特征和运动特征可以发现它们之间相关和互补的潜在关系,从而提高模型的整体性能。尽管它很简单,但我们在广泛使用的视频QA数据集MSVD-QA和MSRVTT-QA上进行的大量实验表明,与之前的方法相比,性能有了明显的提高。这些结果验证了所提出的知识蒸馏方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Video Question Answering Model Based on Knowledge Distillation
Video question answering (QA) is a cross-modal task that requires understanding the video content to answer questions. Current techniques address this challenge by employing stacked modules, such as attention mechanisms and graph convolutional networks. These methods reason about the semantics of video features and their interaction with text-based questions, yielding excellent results. However, these approaches often learn and fuse features representing different aspects of the video separately, neglecting the intra-interaction and overlooking the latent complex correlations between the extracted features. Additionally, the stacking of modules introduces a large number of parameters, making model training more challenging. To address these issues, we propose a novel multimodal knowledge distillation method that leverages the strengths of knowledge distillation for model compression and feature enhancement. Specifically, the fused features in the larger teacher model are distilled into knowledge, which guides the learning of appearance and motion features in the smaller student model. By incorporating cross-modal information in the early stages, the appearance and motion features can discover their related and complementary potential relationships, thus improving the overall model performance. Despite its simplicity, our extensive experiments on the widely used video QA datasets, MSVD-QA and MSRVTT-QA, demonstrate clear performance improvements over prior methods. These results validate the effectiveness of the proposed knowledge distillation approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Traceable Constant-Size Multi-authority Credentials Pspace-Completeness of the Temporal Logic of Sub-Intervals and Suffixes Employee Productivity Assessment Using Fuzzy Inference System Correction of Threshold Determination in Rapid-Guessing Behaviour Detection Combining Classifiers for Deep Learning Mask Face Recognition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1