A-LMST:一种移动Ad Hoc网络自适应LMST局部拓扑控制算法

Luciana B. Abiuzi, Cecília A. C. César, C. Ribeiro
{"title":"A-LMST:一种移动Ad Hoc网络自适应LMST局部拓扑控制算法","authors":"Luciana B. Abiuzi, Cecília A. C. César, C. Ribeiro","doi":"10.1109/LCN.2016.34","DOIUrl":null,"url":null,"abstract":"The pattern of mobile nodes movement and node removals or additions cause frequent and unpredictable changes in the topology of mobile ad hoc networks. Network performance can thus vary significantly under different mobility models, as well as from the variation in parameters of a given mobility model, such as node movement speed and number of nodes in the network. Hence, the efficiency of a network depends not only on its control protocols, but also on its topology. In this paper, we first compare the impact that mobility parameter variations produces on typical network metrics - routing packets generated, routing overhead and route discovery average delay - in networks with and without topology control. Results from experiments in a wireless network simulator show that, in networks with topology control using 2 or 3 hops for route discovery depending on the node degree, the number of routing packets decreases, therefore improving the operation and efficiency of the network. Based on these results, a local adaptive self-configuration LMST topology control was then proposed and analysed, producing better results as the network size increases.","PeriodicalId":6864,"journal":{"name":"2016 IEEE 41st Conference on Local Computer Networks (LCN)","volume":"20 1","pages":"168-171"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"A-LMST: An Adaptive LMST Local Topology Control Algorithm for Mobile Ad Hoc Networks\",\"authors\":\"Luciana B. Abiuzi, Cecília A. C. César, C. Ribeiro\",\"doi\":\"10.1109/LCN.2016.34\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The pattern of mobile nodes movement and node removals or additions cause frequent and unpredictable changes in the topology of mobile ad hoc networks. Network performance can thus vary significantly under different mobility models, as well as from the variation in parameters of a given mobility model, such as node movement speed and number of nodes in the network. Hence, the efficiency of a network depends not only on its control protocols, but also on its topology. In this paper, we first compare the impact that mobility parameter variations produces on typical network metrics - routing packets generated, routing overhead and route discovery average delay - in networks with and without topology control. Results from experiments in a wireless network simulator show that, in networks with topology control using 2 or 3 hops for route discovery depending on the node degree, the number of routing packets decreases, therefore improving the operation and efficiency of the network. Based on these results, a local adaptive self-configuration LMST topology control was then proposed and analysed, producing better results as the network size increases.\",\"PeriodicalId\":6864,\"journal\":{\"name\":\"2016 IEEE 41st Conference on Local Computer Networks (LCN)\",\"volume\":\"20 1\",\"pages\":\"168-171\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE 41st Conference on Local Computer Networks (LCN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/LCN.2016.34\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 41st Conference on Local Computer Networks (LCN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LCN.2016.34","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

移动节点移动和节点移除或添加的模式导致移动自组织网络拓扑结构频繁且不可预测的变化。因此,在不同的移动性模型下,以及给定移动性模型的参数(如节点移动速度和网络中的节点数量)的变化,网络性能可能会有很大差异。因此,网络的效率不仅取决于其控制协议,还取决于其拓扑结构。在本文中,我们首先比较了移动性参数变化在有和没有拓扑控制的网络中对典型网络指标(生成的路由数据包、路由开销和路由发现平均延迟)的影响。在无线网络模拟器上的实验结果表明,在根据节点度采用2或3跳拓扑控制进行路由发现的网络中,路由数据包的数量减少,从而提高了网络的运行效率。在此基础上,提出并分析了一种局部自适应自配置LMST拓扑控制方法,随着网络规模的增大,控制效果更好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A-LMST: An Adaptive LMST Local Topology Control Algorithm for Mobile Ad Hoc Networks
The pattern of mobile nodes movement and node removals or additions cause frequent and unpredictable changes in the topology of mobile ad hoc networks. Network performance can thus vary significantly under different mobility models, as well as from the variation in parameters of a given mobility model, such as node movement speed and number of nodes in the network. Hence, the efficiency of a network depends not only on its control protocols, but also on its topology. In this paper, we first compare the impact that mobility parameter variations produces on typical network metrics - routing packets generated, routing overhead and route discovery average delay - in networks with and without topology control. Results from experiments in a wireless network simulator show that, in networks with topology control using 2 or 3 hops for route discovery depending on the node degree, the number of routing packets decreases, therefore improving the operation and efficiency of the network. Based on these results, a local adaptive self-configuration LMST topology control was then proposed and analysed, producing better results as the network size increases.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Message from the General Chair Message from the general chair Best of Both Worlds: Prioritizing Network Coding without Increased Space Complexity Controlling Network Latency in Mixed Hadoop Clusters: Do We Need Active Queue Management? TransFetch: A Viewing Behavior Driven Video Distribution Framework in Public Transport
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1