随机环境下马尔可夫种群模型的稀疏学习

C. Zechner, Federico Wadehn, H. Koeppl
{"title":"随机环境下马尔可夫种群模型的稀疏学习","authors":"C. Zechner, Federico Wadehn, H. Koeppl","doi":"10.3929/ETHZ-A-010362110","DOIUrl":null,"url":null,"abstract":"Markovian population models are suitable abstractions to describe well-mixed interacting particle systems in situation where stochastic fluctuations are significant due to the involvement of low copy particles. In molecular biology, measurements on the single-cell level attest to this stochasticity and one is tempted to interpret such measurements across an isogenic cell population as different sample paths of one and the same Markov model. Over recent years evidence built up against this interpretation due to the presence of cell-to-cell variability stemming from factors other than intrinsic fluctuations. To account for this extrinsic variability, Markovian models in random environments need to be considered and a key emerging question is how to perform inference for such models. We model extrinsic variability by a random parametrization of all propensity functions. To detect which of those propensities have significant variability, we lay out a sparse learning procedure captured by a hierarchical Bayesian model whose evidence function is iteratively maximized using a variational Bayesian expectation-maximization algorithm.","PeriodicalId":13260,"journal":{"name":"IFAC Proceedings Volumes","volume":"14 1","pages":"1723-1728"},"PeriodicalIF":0.0000,"publicationDate":"2014-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Sparse Learning of Markovian Population Models in Random Environments\",\"authors\":\"C. Zechner, Federico Wadehn, H. Koeppl\",\"doi\":\"10.3929/ETHZ-A-010362110\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Markovian population models are suitable abstractions to describe well-mixed interacting particle systems in situation where stochastic fluctuations are significant due to the involvement of low copy particles. In molecular biology, measurements on the single-cell level attest to this stochasticity and one is tempted to interpret such measurements across an isogenic cell population as different sample paths of one and the same Markov model. Over recent years evidence built up against this interpretation due to the presence of cell-to-cell variability stemming from factors other than intrinsic fluctuations. To account for this extrinsic variability, Markovian models in random environments need to be considered and a key emerging question is how to perform inference for such models. We model extrinsic variability by a random parametrization of all propensity functions. To detect which of those propensities have significant variability, we lay out a sparse learning procedure captured by a hierarchical Bayesian model whose evidence function is iteratively maximized using a variational Bayesian expectation-maximization algorithm.\",\"PeriodicalId\":13260,\"journal\":{\"name\":\"IFAC Proceedings Volumes\",\"volume\":\"14 1\",\"pages\":\"1723-1728\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-01-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IFAC Proceedings Volumes\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3929/ETHZ-A-010362110\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IFAC Proceedings Volumes","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3929/ETHZ-A-010362110","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

马尔可夫种群模型是描述混合良好的相互作用粒子系统的合适抽象,在这种情况下,由于低拷贝粒子的参与,随机波动很大。在分子生物学中,单细胞水平上的测量证明了这种随机性,人们倾向于将这种跨等基因细胞群体的测量解释为同一个马尔可夫模型的不同样本路径。近年来,由于细胞间存在由内在波动以外的因素引起的变异性,越来越多的证据反对这种解释。为了解释这种外在的可变性,需要考虑随机环境中的马尔可夫模型,而一个关键的新问题是如何对这种模型进行推理。我们通过所有倾向函数的随机参数化来模拟外在变异性。为了检测哪些倾向具有显著的可变性,我们制定了一个由分层贝叶斯模型捕获的稀疏学习过程,该模型的证据函数使用变分贝叶斯期望最大化算法迭代最大化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Sparse Learning of Markovian Population Models in Random Environments
Markovian population models are suitable abstractions to describe well-mixed interacting particle systems in situation where stochastic fluctuations are significant due to the involvement of low copy particles. In molecular biology, measurements on the single-cell level attest to this stochasticity and one is tempted to interpret such measurements across an isogenic cell population as different sample paths of one and the same Markov model. Over recent years evidence built up against this interpretation due to the presence of cell-to-cell variability stemming from factors other than intrinsic fluctuations. To account for this extrinsic variability, Markovian models in random environments need to be considered and a key emerging question is how to perform inference for such models. We model extrinsic variability by a random parametrization of all propensity functions. To detect which of those propensities have significant variability, we lay out a sparse learning procedure captured by a hierarchical Bayesian model whose evidence function is iteratively maximized using a variational Bayesian expectation-maximization algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Control of a Vibrating Axisymmetric Membrane using Piezoelectric Transducers An expert system for freshwater fish-farming industry Platelet count control in immune thrombocytopenic purpura patient: optimum romiplostim dose profile A Hybrid Model of the Akamai Adaptive Streaming Control System Control of an Industrial Scale Bioreactor using a PAT Analyser
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1