{"title":"基于时间平滑变压器的实时在线视频检测","authors":"Yue Zhao, Philipp Krahenbuhl","doi":"10.48550/arXiv.2209.09236","DOIUrl":null,"url":null,"abstract":"Streaming video recognition reasons about objects and their actions in every frame of a video. A good streaming recognition model captures both long-term dynamics and short-term changes of video. Unfortunately, in most existing methods, the computational complexity grows linearly or quadratically with the length of the considered dynamics. This issue is particularly pronounced in transformer-based architectures. To address this issue, we reformulate the cross-attention in a video transformer through the lens of kernel and apply two kinds of temporal smoothing kernel: A box kernel or a Laplace kernel. The resulting streaming attention reuses much of the computation from frame to frame, and only requires a constant time update each frame. Based on this idea, we build TeSTra, a Temporal Smoothing Transformer, that takes in arbitrarily long inputs with constant caching and computing overhead. Specifically, it runs $6\\times$ faster than equivalent sliding-window based transformers with 2,048 frames in a streaming setting. Furthermore, thanks to the increased temporal span, TeSTra achieves state-of-the-art results on THUMOS'14 and EPIC-Kitchen-100, two standard online action detection and action anticipation datasets. A real-time version of TeSTra outperforms all but one prior approaches on the THUMOS'14 dataset.","PeriodicalId":72676,"journal":{"name":"Computer vision - ECCV ... : ... European Conference on Computer Vision : proceedings. European Conference on Computer Vision","volume":"103 1","pages":"485-502"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Real-time Online Video Detection with Temporal Smoothing Transformers\",\"authors\":\"Yue Zhao, Philipp Krahenbuhl\",\"doi\":\"10.48550/arXiv.2209.09236\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Streaming video recognition reasons about objects and their actions in every frame of a video. A good streaming recognition model captures both long-term dynamics and short-term changes of video. Unfortunately, in most existing methods, the computational complexity grows linearly or quadratically with the length of the considered dynamics. This issue is particularly pronounced in transformer-based architectures. To address this issue, we reformulate the cross-attention in a video transformer through the lens of kernel and apply two kinds of temporal smoothing kernel: A box kernel or a Laplace kernel. The resulting streaming attention reuses much of the computation from frame to frame, and only requires a constant time update each frame. Based on this idea, we build TeSTra, a Temporal Smoothing Transformer, that takes in arbitrarily long inputs with constant caching and computing overhead. Specifically, it runs $6\\\\times$ faster than equivalent sliding-window based transformers with 2,048 frames in a streaming setting. Furthermore, thanks to the increased temporal span, TeSTra achieves state-of-the-art results on THUMOS'14 and EPIC-Kitchen-100, two standard online action detection and action anticipation datasets. A real-time version of TeSTra outperforms all but one prior approaches on the THUMOS'14 dataset.\",\"PeriodicalId\":72676,\"journal\":{\"name\":\"Computer vision - ECCV ... : ... European Conference on Computer Vision : proceedings. European Conference on Computer Vision\",\"volume\":\"103 1\",\"pages\":\"485-502\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer vision - ECCV ... : ... European Conference on Computer Vision : proceedings. European Conference on Computer Vision\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2209.09236\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer vision - ECCV ... : ... European Conference on Computer Vision : proceedings. European Conference on Computer Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2209.09236","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Real-time Online Video Detection with Temporal Smoothing Transformers
Streaming video recognition reasons about objects and their actions in every frame of a video. A good streaming recognition model captures both long-term dynamics and short-term changes of video. Unfortunately, in most existing methods, the computational complexity grows linearly or quadratically with the length of the considered dynamics. This issue is particularly pronounced in transformer-based architectures. To address this issue, we reformulate the cross-attention in a video transformer through the lens of kernel and apply two kinds of temporal smoothing kernel: A box kernel or a Laplace kernel. The resulting streaming attention reuses much of the computation from frame to frame, and only requires a constant time update each frame. Based on this idea, we build TeSTra, a Temporal Smoothing Transformer, that takes in arbitrarily long inputs with constant caching and computing overhead. Specifically, it runs $6\times$ faster than equivalent sliding-window based transformers with 2,048 frames in a streaming setting. Furthermore, thanks to the increased temporal span, TeSTra achieves state-of-the-art results on THUMOS'14 and EPIC-Kitchen-100, two standard online action detection and action anticipation datasets. A real-time version of TeSTra outperforms all but one prior approaches on the THUMOS'14 dataset.