利用模糊逻辑方法建立长期负荷预测模型

Danladi Ali, Michael Yohanna, M.I. Puwu, B.M. Garkida
{"title":"利用模糊逻辑方法建立长期负荷预测模型","authors":"Danladi Ali,&nbsp;Michael Yohanna,&nbsp;M.I. Puwu,&nbsp;B.M. Garkida","doi":"10.1016/j.psra.2016.09.011","DOIUrl":null,"url":null,"abstract":"<div><p>The importance of long-term load forecasting in the power industries cannot be over-emphasised, as it provides the industries with future power demand that may be useful in generating, transmitting and distributing power reliably and economically. In recent times, many techniques have been used in load forecasting, but artificial intelligence techniques (fuzzy logic and ANN) provide greater efficiency compared to conventional techniques (e.g., regression and time series). In this paper, a fuzzy logic model for long-term load forecasting is presented. A fuzzy logic model is developed based on the weather parameters (temperature and humidity) and historical load data for the town of Mubi in Adamawa state to forecast a year-ahead load. The fuzzy logic model forecast a year-ahead load with a MAPE of 6.9% and efficiency of 93.1%. The result obtained reveal that the proposed model is capable of predicting future load.</p></div>","PeriodicalId":100999,"journal":{"name":"Pacific Science Review A: Natural Science and Engineering","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2016-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.psra.2016.09.011","citationCount":"73","resultStr":"{\"title\":\"Long-term load forecast modelling using a fuzzy logic approach\",\"authors\":\"Danladi Ali,&nbsp;Michael Yohanna,&nbsp;M.I. Puwu,&nbsp;B.M. Garkida\",\"doi\":\"10.1016/j.psra.2016.09.011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The importance of long-term load forecasting in the power industries cannot be over-emphasised, as it provides the industries with future power demand that may be useful in generating, transmitting and distributing power reliably and economically. In recent times, many techniques have been used in load forecasting, but artificial intelligence techniques (fuzzy logic and ANN) provide greater efficiency compared to conventional techniques (e.g., regression and time series). In this paper, a fuzzy logic model for long-term load forecasting is presented. A fuzzy logic model is developed based on the weather parameters (temperature and humidity) and historical load data for the town of Mubi in Adamawa state to forecast a year-ahead load. The fuzzy logic model forecast a year-ahead load with a MAPE of 6.9% and efficiency of 93.1%. The result obtained reveal that the proposed model is capable of predicting future load.</p></div>\",\"PeriodicalId\":100999,\"journal\":{\"name\":\"Pacific Science Review A: Natural Science and Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.psra.2016.09.011\",\"citationCount\":\"73\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pacific Science Review A: Natural Science and Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2405882316300217\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pacific Science Review A: Natural Science and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405882316300217","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 73

摘要

长期负荷预测在电力行业的重要性怎么强调都不为过,因为它为电力行业提供了未来的电力需求,这可能对可靠和经济地发电、输电和配电有用。近年来,许多技术已用于负荷预测,但人工智能技术(模糊逻辑和人工神经网络)比传统技术(如回归和时间序列)提供更高的效率。本文提出了一种用于长期负荷预测的模糊逻辑模型。基于天气参数(温度和湿度)和阿达马瓦州Mubi镇的历史负荷数据,开发了一个模糊逻辑模型,以预测未来一年的负荷。模糊逻辑模型预测未来一年的负荷,MAPE为6.9%,效率为93.1%。结果表明,该模型具有预测未来负荷的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Long-term load forecast modelling using a fuzzy logic approach

The importance of long-term load forecasting in the power industries cannot be over-emphasised, as it provides the industries with future power demand that may be useful in generating, transmitting and distributing power reliably and economically. In recent times, many techniques have been used in load forecasting, but artificial intelligence techniques (fuzzy logic and ANN) provide greater efficiency compared to conventional techniques (e.g., regression and time series). In this paper, a fuzzy logic model for long-term load forecasting is presented. A fuzzy logic model is developed based on the weather parameters (temperature and humidity) and historical load data for the town of Mubi in Adamawa state to forecast a year-ahead load. The fuzzy logic model forecast a year-ahead load with a MAPE of 6.9% and efficiency of 93.1%. The result obtained reveal that the proposed model is capable of predicting future load.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
WITHDRAWN: Technical and economic feasibility of using sustainable construction methods for green buildings in Tehran Editorial Board Fuzzy risk analysis in familial breast cancer using a similarity measure of interval-valued fuzzy numbers Synthesis of CdO nanopowders by a simple soft chemical method and evaluation of their antimicrobial activities Analysis of pricing decision for substitutable and complementary products with a common retailer
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1