940nm VCSEL单发射极器件的设计与制造

IF 0.8 4区 物理与天体物理 Q3 PHYSICS, MULTIDISCIPLINARY 物理学报 Pub Date : 2023-01-01 DOI:10.7498/aps.72.20230297
Pan Zhi-Peng, Li Wei, Lv Jia-Gang, Nie Yu-Wei, Zhong Li, Liu Su-ping, Ma Xiao-Yu
{"title":"940nm VCSEL单发射极器件的设计与制造","authors":"Pan Zhi-Peng, Li Wei, Lv Jia-Gang, Nie Yu-Wei, Zhong Li, Liu Su-ping, Ma Xiao-Yu","doi":"10.7498/aps.72.20230297","DOIUrl":null,"url":null,"abstract":"As the key part of Vertical Cavity Surface Emitting Laser (VCSEL), active region will seriously affect the threshold and efficiency of the device. To obtain appropriate laser wavelength and material gain, the In0.18Ga0.82As strain compensated quantum well is optimized design. The relationship between the lasing wavelength of multiple quantum wells (MQWs) and the thickness is calculated. Take into account the influence between the active region temperature and the lasing wavelength, the thickness of the quantum well is chose as 6 nm, the quantum barrier thickness is chose as 8 nm, corresponding to the lasing wavelength of 929 nm. The material gain characteristics of the MQWs under different temperature are simulated by Rsoft. The material gain exceeds 3300 /cm at 300 K, and the temperature drift coefficient of the peak wavelength is 0.3 nm/K. In this paper, Al0.09Ga0.91As and Al0.89Ga0.11As are selected as high and low refractive index materials of Distributed Braagg Reflector (DBR), and 20 nm graded layer is inserted between two types of materials. The influence of the graded layer thickness of DBR on the valence band barrier and reflection spectrum is calculated and analyzed. The increase of graded layer thickness can lead to the decrease of band barrier peak and the decrease of reflection spectrum bandwidth. The reflection spectrum and phase spectrum of P-DBR and N-DBR are calculated by the transmission matrix mode (TMM), the reflectance of DBR is over 99% and the phase shift is zero at 940 nm. The optical field distribution of the whole VCSEL structure is simulated, in which the standing wave peak overlaps with the active region, and the maximum gain can be obtained. Based on the finite element method (FEM), the effect of oxidation confined layer on the injection current is simulated. The current in the active region is effectively limited to the position corresponding to the oxidation confined hole, and its current density is stronger and more uniform. The optical field distribution in different modes of PC-VCSEL is simulated, different modes have different resonant wavelengths. The quality factor Q in different modes of VCSEL and Photonic Crystal-Vertical Cavity Surface Emitting Laser (PC-VCSEL) is calculated, Q of the fundamental mode is higher than higher transverse mode. It is demonstrated that the photonic crystal air hole structure can realize the output of basic transverse mode by increasing the loss of high order transverse mode. VCSEL and PC-VCSEL with oxidation hole size of 22 μm are successfully fabricated, in which the photonic crystal period is 5 μm, the air pore diameter is 2.5 μm and the etching depth is 2 μm. Under continuous current test, the maximum slope efficiency of VCSEL is 0.66 mW/mA, the output power is 9.3 mW at 22 mA, and the lasing wavelength is 948.64 nm at 20 mA injection current. Multiple wavelengths and large spectrum width is observed in the spectrum of VSCEL, which is an obvious multi-transverse mode. The maximum fundamental transverse mode output of PC-VCSEL reaches 2.55 mW, the side mode suppression ratio (SMSR) is more than 25 dB, and the spectrum width is less than 0.2 nm, indicating that the photonic crystal air hole has a strong control effect on the transverse mode, and the laser wavelength is 946.4 nm at 17 mA.","PeriodicalId":6995,"journal":{"name":"物理学报","volume":"96 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design and Fabrication of 940 nm VCSEL Single-emitter Device\",\"authors\":\"Pan Zhi-Peng, Li Wei, Lv Jia-Gang, Nie Yu-Wei, Zhong Li, Liu Su-ping, Ma Xiao-Yu\",\"doi\":\"10.7498/aps.72.20230297\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As the key part of Vertical Cavity Surface Emitting Laser (VCSEL), active region will seriously affect the threshold and efficiency of the device. To obtain appropriate laser wavelength and material gain, the In0.18Ga0.82As strain compensated quantum well is optimized design. The relationship between the lasing wavelength of multiple quantum wells (MQWs) and the thickness is calculated. Take into account the influence between the active region temperature and the lasing wavelength, the thickness of the quantum well is chose as 6 nm, the quantum barrier thickness is chose as 8 nm, corresponding to the lasing wavelength of 929 nm. The material gain characteristics of the MQWs under different temperature are simulated by Rsoft. The material gain exceeds 3300 /cm at 300 K, and the temperature drift coefficient of the peak wavelength is 0.3 nm/K. In this paper, Al0.09Ga0.91As and Al0.89Ga0.11As are selected as high and low refractive index materials of Distributed Braagg Reflector (DBR), and 20 nm graded layer is inserted between two types of materials. The influence of the graded layer thickness of DBR on the valence band barrier and reflection spectrum is calculated and analyzed. The increase of graded layer thickness can lead to the decrease of band barrier peak and the decrease of reflection spectrum bandwidth. The reflection spectrum and phase spectrum of P-DBR and N-DBR are calculated by the transmission matrix mode (TMM), the reflectance of DBR is over 99% and the phase shift is zero at 940 nm. The optical field distribution of the whole VCSEL structure is simulated, in which the standing wave peak overlaps with the active region, and the maximum gain can be obtained. Based on the finite element method (FEM), the effect of oxidation confined layer on the injection current is simulated. The current in the active region is effectively limited to the position corresponding to the oxidation confined hole, and its current density is stronger and more uniform. The optical field distribution in different modes of PC-VCSEL is simulated, different modes have different resonant wavelengths. The quality factor Q in different modes of VCSEL and Photonic Crystal-Vertical Cavity Surface Emitting Laser (PC-VCSEL) is calculated, Q of the fundamental mode is higher than higher transverse mode. It is demonstrated that the photonic crystal air hole structure can realize the output of basic transverse mode by increasing the loss of high order transverse mode. VCSEL and PC-VCSEL with oxidation hole size of 22 μm are successfully fabricated, in which the photonic crystal period is 5 μm, the air pore diameter is 2.5 μm and the etching depth is 2 μm. Under continuous current test, the maximum slope efficiency of VCSEL is 0.66 mW/mA, the output power is 9.3 mW at 22 mA, and the lasing wavelength is 948.64 nm at 20 mA injection current. Multiple wavelengths and large spectrum width is observed in the spectrum of VSCEL, which is an obvious multi-transverse mode. The maximum fundamental transverse mode output of PC-VCSEL reaches 2.55 mW, the side mode suppression ratio (SMSR) is more than 25 dB, and the spectrum width is less than 0.2 nm, indicating that the photonic crystal air hole has a strong control effect on the transverse mode, and the laser wavelength is 946.4 nm at 17 mA.\",\"PeriodicalId\":6995,\"journal\":{\"name\":\"物理学报\",\"volume\":\"96 1\",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"物理学报\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.7498/aps.72.20230297\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"物理学报","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.7498/aps.72.20230297","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

有源区作为垂直腔面发射激光器(VCSEL)的关键部分,将严重影响器件的阈值和效率。为了获得合适的激光波长和材料增益,对In0.18Ga0.82As应变补偿量子阱进行了优化设计。计算了多量子阱的激光波长与厚度的关系。考虑到活性区温度和激光波长的影响,选择量子阱厚度为6 nm,量子势垒厚度为8 nm,对应激光波长为929 nm。利用Rsoft软件模拟了不同温度下mqw的材料增益特性。材料在300 K时的增益超过3300 /cm,峰值波长的温度漂移系数为0.3 nm/K。本文选择Al0.09Ga0.91As和Al0.89Ga0.11As作为分布式bragg反射器(DBR)的高、低折射率材料,并在两种材料之间插入20 nm的渐变层。计算分析了DBR渐变层厚对价带势垒和反射谱的影响。梯度层厚度的增加会导致能带势垒峰的减小和反射光谱带宽的减小。采用透射矩阵模式(TMM)计算了P-DBR和N-DBR的反射光谱和相谱,DBR的反射率大于99%,在940 nm处相移为零。模拟了整个VCSEL结构的光场分布,其中驻波峰与有源区重叠,可以获得最大增益。基于有限元法,模拟了氧化约束层对注射电流的影响。有源区的电流被有效地限制在氧化限制孔对应的位置,其电流密度更强、更均匀。模拟了PC-VCSEL在不同模式下的光场分布,不同模式下有不同的谐振波长。计算了VCSEL和光子晶体垂直腔面发射激光器(PC-VCSEL)不同模式下的品质因子Q,基模的Q高于高横模的Q。结果表明,光子晶体气穴结构可以通过增加高阶横模的损耗来实现基本横模的输出。成功制备了氧化孔尺寸为22 μm的VCSEL和PC-VCSEL,其中光子晶体周期为5 μm,空气孔径为2.5 μm,蚀刻深度为2 μm。在连续电流测试下,VCSEL的最大斜率效率为0.66 mW/mA,在22 mA时输出功率为9.3 mW,在20 mA注入电流下,激光波长为948.64 nm。VSCEL光谱具有多波长、大谱宽的特点,具有明显的多横向模式。PC-VCSEL的最大基模横模输出达到2.55 mW,侧模抑制比(SMSR)大于25 dB,谱宽小于0.2 nm,说明光子晶体空气孔对横模有较强的控制作用,在17 mA时激光波长为946.4 nm。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Design and Fabrication of 940 nm VCSEL Single-emitter Device
As the key part of Vertical Cavity Surface Emitting Laser (VCSEL), active region will seriously affect the threshold and efficiency of the device. To obtain appropriate laser wavelength and material gain, the In0.18Ga0.82As strain compensated quantum well is optimized design. The relationship between the lasing wavelength of multiple quantum wells (MQWs) and the thickness is calculated. Take into account the influence between the active region temperature and the lasing wavelength, the thickness of the quantum well is chose as 6 nm, the quantum barrier thickness is chose as 8 nm, corresponding to the lasing wavelength of 929 nm. The material gain characteristics of the MQWs under different temperature are simulated by Rsoft. The material gain exceeds 3300 /cm at 300 K, and the temperature drift coefficient of the peak wavelength is 0.3 nm/K. In this paper, Al0.09Ga0.91As and Al0.89Ga0.11As are selected as high and low refractive index materials of Distributed Braagg Reflector (DBR), and 20 nm graded layer is inserted between two types of materials. The influence of the graded layer thickness of DBR on the valence band barrier and reflection spectrum is calculated and analyzed. The increase of graded layer thickness can lead to the decrease of band barrier peak and the decrease of reflection spectrum bandwidth. The reflection spectrum and phase spectrum of P-DBR and N-DBR are calculated by the transmission matrix mode (TMM), the reflectance of DBR is over 99% and the phase shift is zero at 940 nm. The optical field distribution of the whole VCSEL structure is simulated, in which the standing wave peak overlaps with the active region, and the maximum gain can be obtained. Based on the finite element method (FEM), the effect of oxidation confined layer on the injection current is simulated. The current in the active region is effectively limited to the position corresponding to the oxidation confined hole, and its current density is stronger and more uniform. The optical field distribution in different modes of PC-VCSEL is simulated, different modes have different resonant wavelengths. The quality factor Q in different modes of VCSEL and Photonic Crystal-Vertical Cavity Surface Emitting Laser (PC-VCSEL) is calculated, Q of the fundamental mode is higher than higher transverse mode. It is demonstrated that the photonic crystal air hole structure can realize the output of basic transverse mode by increasing the loss of high order transverse mode. VCSEL and PC-VCSEL with oxidation hole size of 22 μm are successfully fabricated, in which the photonic crystal period is 5 μm, the air pore diameter is 2.5 μm and the etching depth is 2 μm. Under continuous current test, the maximum slope efficiency of VCSEL is 0.66 mW/mA, the output power is 9.3 mW at 22 mA, and the lasing wavelength is 948.64 nm at 20 mA injection current. Multiple wavelengths and large spectrum width is observed in the spectrum of VSCEL, which is an obvious multi-transverse mode. The maximum fundamental transverse mode output of PC-VCSEL reaches 2.55 mW, the side mode suppression ratio (SMSR) is more than 25 dB, and the spectrum width is less than 0.2 nm, indicating that the photonic crystal air hole has a strong control effect on the transverse mode, and the laser wavelength is 946.4 nm at 17 mA.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
物理学报
物理学报 物理-物理:综合
CiteScore
1.70
自引率
30.00%
发文量
31245
审稿时长
1.9 months
期刊介绍: Acta Physica Sinica (Acta Phys. Sin.) is supervised by Chinese Academy of Sciences and sponsored by Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences. Published by Chinese Physical Society and launched in 1933, it is a semimonthly journal with about 40 articles per issue. It publishes original and top quality research papers, rapid communications and reviews in all branches of physics in Chinese. Acta Phys. Sin. enjoys high reputation among Chinese physics journals and plays a key role in bridging China and rest of the world in physics research. Specific areas of interest include: Condensed matter and materials physics; Atomic, molecular, and optical physics; Statistical, nonlinear, and soft matter physics; Plasma physics; Interdisciplinary physics.
期刊最新文献
Simulation method of urban evacuation based on mesoscopic cellular automata Medium Correction to Gravitational Form Factors Research progress of applications of freestanding single crystal oxide thin film Research progress of ultra-high spatiotemporal resolved microscopy High-fidelity single-qubit gates of a strong driven singlet-triplet qubit
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1