长期施肥对水稻根际酶活性和微生物群落组成的影响

Weitao Li, Y. Kuzyakov, Yulong Zheng, Ming Liu, Meng Wu, Yuanhua Dong, Zhongpei Li
{"title":"长期施肥对水稻根际酶活性和微生物群落组成的影响","authors":"Weitao Li, Y. Kuzyakov, Yulong Zheng, Ming Liu, Meng Wu, Yuanhua Dong, Zhongpei Li","doi":"10.1080/09064710.2021.2011394","DOIUrl":null,"url":null,"abstract":"ABSTRACT Mineral fertilisers differ in changing soil properties, and revealing how the rhizosphere and non-rhizosphere respond could provide a robust assessment of fertiliser regimes. Rhizosphere and non-rhizosphere soils were sampled from five fertilisation treatments in a long-term (24 year) experiment. Enzyme activities and total phospholipid fatty acids (PLFA) content in the rhizosphere soil were 85.8% and 51.3% higher than in the non-rhizosphere soil, respectively. Fertilisation increased enzyme activities, especially the N-cycling enzyme β-1,4-N-acetylglucosaminidase in NP fertilised soil (1.5 and 2.5 times for rhizosphere and non-rhizosphere soil, respectively). The PLFA composition indicated that fungi dominated in the rhizosphere fertilised with P, whereas bacteria were more common in the non-rhizosphere soil. The PLFA contents and enzyme activities in the rhizosphere of P-fertilised plants were lower than those in the non-rhizosphere soil because P availability was lower in the rhizosphere. The redundancy analysis showed that the microbial community in the rhizosphere soil was different from that of the non-rhizosphere soil, mainly because there were differences in the 15:1ω6c and 16:0. Long-term (24 year) fertilisation strongly increased nutrient contents, and microbial biomass and activity in paddy soil. It is advisable to apply P fertiliser in the root zone to increase fertiliser use efficiency.","PeriodicalId":7094,"journal":{"name":"Acta Agriculturae Scandinavica, Section B — Soil & Plant Science","volume":"342 1","pages":"454 - 462"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Effect of long-term fertilisation on enzyme activities and microbial community composition in the rice rhizosphere\",\"authors\":\"Weitao Li, Y. Kuzyakov, Yulong Zheng, Ming Liu, Meng Wu, Yuanhua Dong, Zhongpei Li\",\"doi\":\"10.1080/09064710.2021.2011394\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Mineral fertilisers differ in changing soil properties, and revealing how the rhizosphere and non-rhizosphere respond could provide a robust assessment of fertiliser regimes. Rhizosphere and non-rhizosphere soils were sampled from five fertilisation treatments in a long-term (24 year) experiment. Enzyme activities and total phospholipid fatty acids (PLFA) content in the rhizosphere soil were 85.8% and 51.3% higher than in the non-rhizosphere soil, respectively. Fertilisation increased enzyme activities, especially the N-cycling enzyme β-1,4-N-acetylglucosaminidase in NP fertilised soil (1.5 and 2.5 times for rhizosphere and non-rhizosphere soil, respectively). The PLFA composition indicated that fungi dominated in the rhizosphere fertilised with P, whereas bacteria were more common in the non-rhizosphere soil. The PLFA contents and enzyme activities in the rhizosphere of P-fertilised plants were lower than those in the non-rhizosphere soil because P availability was lower in the rhizosphere. The redundancy analysis showed that the microbial community in the rhizosphere soil was different from that of the non-rhizosphere soil, mainly because there were differences in the 15:1ω6c and 16:0. Long-term (24 year) fertilisation strongly increased nutrient contents, and microbial biomass and activity in paddy soil. It is advisable to apply P fertiliser in the root zone to increase fertiliser use efficiency.\",\"PeriodicalId\":7094,\"journal\":{\"name\":\"Acta Agriculturae Scandinavica, Section B — Soil & Plant Science\",\"volume\":\"342 1\",\"pages\":\"454 - 462\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Agriculturae Scandinavica, Section B — Soil & Plant Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/09064710.2021.2011394\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Agriculturae Scandinavica, Section B — Soil & Plant Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/09064710.2021.2011394","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

矿质肥料在改变土壤性质方面的差异,揭示根际和非根际如何响应可以提供对肥料制度的可靠评估。在一项长期(24年)试验中,对5个施肥处理的根际和非根际土壤进行取样。根际土壤酶活性和总磷脂脂肪酸含量分别比非根际土壤高85.8%和51.3%。施肥提高了NP施肥土壤的酶活性,尤其是氮循环酶β-1,4- n-乙酰氨基葡萄糖苷酶活性(根际土壤和非根际土壤分别提高了1.5倍和2.5倍)。PLFA组成表明,施磷根际土壤以真菌为主,而非根际土壤以细菌为主。施磷肥植株根际PLFA含量和酶活性低于非根际土壤,这是由于根际磷素有效性较低。冗余分析表明,根际土壤微生物群落与非根际土壤微生物群落存在差异,主要是由于15:1ω6c和16:0存在差异。长期(24年)施肥能显著提高水稻土的养分含量、微生物量和活性。根区施磷肥可提高肥料利用率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Effect of long-term fertilisation on enzyme activities and microbial community composition in the rice rhizosphere
ABSTRACT Mineral fertilisers differ in changing soil properties, and revealing how the rhizosphere and non-rhizosphere respond could provide a robust assessment of fertiliser regimes. Rhizosphere and non-rhizosphere soils were sampled from five fertilisation treatments in a long-term (24 year) experiment. Enzyme activities and total phospholipid fatty acids (PLFA) content in the rhizosphere soil were 85.8% and 51.3% higher than in the non-rhizosphere soil, respectively. Fertilisation increased enzyme activities, especially the N-cycling enzyme β-1,4-N-acetylglucosaminidase in NP fertilised soil (1.5 and 2.5 times for rhizosphere and non-rhizosphere soil, respectively). The PLFA composition indicated that fungi dominated in the rhizosphere fertilised with P, whereas bacteria were more common in the non-rhizosphere soil. The PLFA contents and enzyme activities in the rhizosphere of P-fertilised plants were lower than those in the non-rhizosphere soil because P availability was lower in the rhizosphere. The redundancy analysis showed that the microbial community in the rhizosphere soil was different from that of the non-rhizosphere soil, mainly because there were differences in the 15:1ω6c and 16:0. Long-term (24 year) fertilisation strongly increased nutrient contents, and microbial biomass and activity in paddy soil. It is advisable to apply P fertiliser in the root zone to increase fertiliser use efficiency.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The application of big data in the legal improvement of agricultural product quality and safety governance Research on the integrated development of leisure agriculture and red cultural tourism under the background of big data Contextualising smallholder organic agriculture in Zimbabwe and other sub-Saharan African countries: a review of challenges and opportunities Assessment of the spatial variability of selected soil chemical properties using geostatistical analysis in the north-western highlands of Ethiopia Integration of host resistance and fungicides reduced ascochyta blight pressure and minimised yield loss in field pea (Pisum sativum L.) in southern Ethiopia
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1