Udeme John, Ibi-Ada Itotoi, A. Isah, Anita Odiete, Erome Utunedi, Musa Mohamma, Martins Ikhuehi
{"title":"注入能力下降建模工具的开发——以尼日尔三角洲陆上采出水回注项目为例","authors":"Udeme John, Ibi-Ada Itotoi, A. Isah, Anita Odiete, Erome Utunedi, Musa Mohamma, Martins Ikhuehi","doi":"10.2118/207087-ms","DOIUrl":null,"url":null,"abstract":"\n The largest component of operating costs in most matured assets utilizing 3rd party evacuation infrastructure is crude handling charges. In mature fields with significant water production, water volumes could easily account for over half of crude handling costs. Produced water re-injection for disposal has become a popular strategy for optimizing liquid handling cost as well as supporting environmental responsibility.\n Injectivity for water disposal wells have been demonstrated to decline with time, the most common factor being permeability reduction arising mostly from fines migration, suspended and dissolved solids in injected water, microbial activities, oil in water and cation concentrations, etc. Thus, Injection wells typically require intermittent stimulation to restore or improve injectivity. Fracturing has been demonstrated to prolong injectivity. However, sustainability is greatly affected by ability to keep fractures open after shut-ins and limited by environmental regulations. Understanding the key mechanisms that lead to injectivity decline will help optimize produced water reinjection systems, enable proactive intervention planning, thus improve injectivity and well availability.\n In this work we present the development of an injectivity modelling and simulation tool called IDS based on relatively recent injectivity models. Testing and validation of the tool using standard data and an active onshore Niger-Delta Produced Water Reinjection Project as a case study are presented.\n An outstanding feature of this simulator is its ability to estimate missing parameters or those whose values are not known to high fidelity via history matching. The resulting nonlinear regression problem is solved using a trust-region reflective approach.\n Decline mechanism regression parameters were similar for a well that had multiple injection periods. Transition time from deep bed to external cake is very sensitive to Total Suspended Solids (TSS) in injected water. Injectivity half-life could increase by as much as 100% for about a 100% drop in mean TSS concentration. The IDS tool was used to predict the injectivity half-life of Well A in the water disposal project.","PeriodicalId":10899,"journal":{"name":"Day 2 Tue, August 03, 2021","volume":"7 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development of Injectivity Decline Modelling Tool: A Case Study of Onshore Niger Delta Produced Water Re-Injection Project\",\"authors\":\"Udeme John, Ibi-Ada Itotoi, A. Isah, Anita Odiete, Erome Utunedi, Musa Mohamma, Martins Ikhuehi\",\"doi\":\"10.2118/207087-ms\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n The largest component of operating costs in most matured assets utilizing 3rd party evacuation infrastructure is crude handling charges. In mature fields with significant water production, water volumes could easily account for over half of crude handling costs. Produced water re-injection for disposal has become a popular strategy for optimizing liquid handling cost as well as supporting environmental responsibility.\\n Injectivity for water disposal wells have been demonstrated to decline with time, the most common factor being permeability reduction arising mostly from fines migration, suspended and dissolved solids in injected water, microbial activities, oil in water and cation concentrations, etc. Thus, Injection wells typically require intermittent stimulation to restore or improve injectivity. Fracturing has been demonstrated to prolong injectivity. However, sustainability is greatly affected by ability to keep fractures open after shut-ins and limited by environmental regulations. Understanding the key mechanisms that lead to injectivity decline will help optimize produced water reinjection systems, enable proactive intervention planning, thus improve injectivity and well availability.\\n In this work we present the development of an injectivity modelling and simulation tool called IDS based on relatively recent injectivity models. Testing and validation of the tool using standard data and an active onshore Niger-Delta Produced Water Reinjection Project as a case study are presented.\\n An outstanding feature of this simulator is its ability to estimate missing parameters or those whose values are not known to high fidelity via history matching. The resulting nonlinear regression problem is solved using a trust-region reflective approach.\\n Decline mechanism regression parameters were similar for a well that had multiple injection periods. Transition time from deep bed to external cake is very sensitive to Total Suspended Solids (TSS) in injected water. Injectivity half-life could increase by as much as 100% for about a 100% drop in mean TSS concentration. The IDS tool was used to predict the injectivity half-life of Well A in the water disposal project.\",\"PeriodicalId\":10899,\"journal\":{\"name\":\"Day 2 Tue, August 03, 2021\",\"volume\":\"7 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Day 2 Tue, August 03, 2021\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2118/207087-ms\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 2 Tue, August 03, 2021","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/207087-ms","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Development of Injectivity Decline Modelling Tool: A Case Study of Onshore Niger Delta Produced Water Re-Injection Project
The largest component of operating costs in most matured assets utilizing 3rd party evacuation infrastructure is crude handling charges. In mature fields with significant water production, water volumes could easily account for over half of crude handling costs. Produced water re-injection for disposal has become a popular strategy for optimizing liquid handling cost as well as supporting environmental responsibility.
Injectivity for water disposal wells have been demonstrated to decline with time, the most common factor being permeability reduction arising mostly from fines migration, suspended and dissolved solids in injected water, microbial activities, oil in water and cation concentrations, etc. Thus, Injection wells typically require intermittent stimulation to restore or improve injectivity. Fracturing has been demonstrated to prolong injectivity. However, sustainability is greatly affected by ability to keep fractures open after shut-ins and limited by environmental regulations. Understanding the key mechanisms that lead to injectivity decline will help optimize produced water reinjection systems, enable proactive intervention planning, thus improve injectivity and well availability.
In this work we present the development of an injectivity modelling and simulation tool called IDS based on relatively recent injectivity models. Testing and validation of the tool using standard data and an active onshore Niger-Delta Produced Water Reinjection Project as a case study are presented.
An outstanding feature of this simulator is its ability to estimate missing parameters or those whose values are not known to high fidelity via history matching. The resulting nonlinear regression problem is solved using a trust-region reflective approach.
Decline mechanism regression parameters were similar for a well that had multiple injection periods. Transition time from deep bed to external cake is very sensitive to Total Suspended Solids (TSS) in injected water. Injectivity half-life could increase by as much as 100% for about a 100% drop in mean TSS concentration. The IDS tool was used to predict the injectivity half-life of Well A in the water disposal project.