利用微波窗和探空信道观测反演水流星的精度

P. Bauer, E. Moreau, S. Michele
{"title":"利用微波窗和探空信道观测反演水流星的精度","authors":"P. Bauer, E. Moreau, S. Michele","doi":"10.1175/JAM2257.1","DOIUrl":null,"url":null,"abstract":"Abstract The retrieval errors of cloud and precipitation hydrometeor contents from spaceborne observations are estimated at microwave frequencies in atmospheric windows between 18 and 150 GHz and in oxygen absorption complexes near 50–60 and 118 GHz. The method is based on a variational retrieval framework using a priori information on the cloud, atmosphere, and surface states from ECMWF short-range forecasts under different weather regimes. This approach was chosen because a consistent description of the model state and its uncertainties is provided, which is unavailable for other methods. The results show that the sounding channels provide more stable, more accurate, and less biased retrievals than window channels—in particular, over land surfaces and with regard to snowfall. Average performance estimates showed that if sounding channels are used, 80% of all retrievals are within 100% error limits and 60% of them are within 50% error limits with regard to rainfall. For snowfall, the sounding channels pr...","PeriodicalId":15026,"journal":{"name":"Journal of Applied Meteorology","volume":"108 1","pages":"1016-1032"},"PeriodicalIF":0.0000,"publicationDate":"2005-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"40","resultStr":"{\"title\":\"Hydrometeor Retrieval Accuracy Using Microwave Window and Sounding Channel Observations\",\"authors\":\"P. Bauer, E. Moreau, S. Michele\",\"doi\":\"10.1175/JAM2257.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The retrieval errors of cloud and precipitation hydrometeor contents from spaceborne observations are estimated at microwave frequencies in atmospheric windows between 18 and 150 GHz and in oxygen absorption complexes near 50–60 and 118 GHz. The method is based on a variational retrieval framework using a priori information on the cloud, atmosphere, and surface states from ECMWF short-range forecasts under different weather regimes. This approach was chosen because a consistent description of the model state and its uncertainties is provided, which is unavailable for other methods. The results show that the sounding channels provide more stable, more accurate, and less biased retrievals than window channels—in particular, over land surfaces and with regard to snowfall. Average performance estimates showed that if sounding channels are used, 80% of all retrievals are within 100% error limits and 60% of them are within 50% error limits with regard to rainfall. For snowfall, the sounding channels pr...\",\"PeriodicalId\":15026,\"journal\":{\"name\":\"Journal of Applied Meteorology\",\"volume\":\"108 1\",\"pages\":\"1016-1032\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"40\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Meteorology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1175/JAM2257.1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Meteorology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1175/JAM2257.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 40

摘要

摘要在18 ~ 150 GHz的大气窗口和50 ~ 60 ~ 118 GHz的氧吸收配合物微波频率下,估算了星载观测云和降水水流星含量的反演误差。该方法基于变分检索框架,使用来自ECMWF在不同天气条件下的短期预报的云、大气和地面状态的先验信息。选择这种方法是因为它提供了对模型状态及其不确定性的一致描述,这是其他方法无法获得的。结果表明,与窗口通道相比,探测通道提供了更稳定、更准确和更少偏差的检索,特别是在陆地表面和降雪方面。平均性能估计表明,如果使用探测通道,80%的检索结果在100%的误差范围内,60%的检索结果在50%的误差范围内。对于降雪,探空通道pr…
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Hydrometeor Retrieval Accuracy Using Microwave Window and Sounding Channel Observations
Abstract The retrieval errors of cloud and precipitation hydrometeor contents from spaceborne observations are estimated at microwave frequencies in atmospheric windows between 18 and 150 GHz and in oxygen absorption complexes near 50–60 and 118 GHz. The method is based on a variational retrieval framework using a priori information on the cloud, atmosphere, and surface states from ECMWF short-range forecasts under different weather regimes. This approach was chosen because a consistent description of the model state and its uncertainties is provided, which is unavailable for other methods. The results show that the sounding channels provide more stable, more accurate, and less biased retrievals than window channels—in particular, over land surfaces and with regard to snowfall. Average performance estimates showed that if sounding channels are used, 80% of all retrievals are within 100% error limits and 60% of them are within 50% error limits with regard to rainfall. For snowfall, the sounding channels pr...
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Simple Empirical Models for Estimating the Increase in the Central Pressure of Tropical Cyclones after Landfall along the Coastline of the United States A Large-Droplet Mode and Prognostic Number Concentration of Cloud Droplets in the Colorado State University Regional Atmospheric Modeling System (RAMS). Part II: Sensitivity to a Colorado Winter Snowfall Event On the Horizontal Scale of Elevation Dependence of Australian Monthly Precipitation On the Vertical Structure of Modeled and Observed Deep Convective Storms: Insights for Precipitation Retrieval and Microphysical Parameterization A Comparison of the Conservation of Number Concentration for the Continuous Collection and Vapor Diffusion Growth Equations Using One- and Two-Moment Schemes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1