ph诱导的反式查尔酮异构体及其相关化合物的正交光响应

Colorants Pub Date : 2023-02-17 DOI:10.3390/colorants2010005
Jeonghee Kang, Ketevan Basilashvili, B. Yoo, Jong I. Lee
{"title":"ph诱导的反式查尔酮异构体及其相关化合物的正交光响应","authors":"Jeonghee Kang, Ketevan Basilashvili, B. Yoo, Jong I. Lee","doi":"10.3390/colorants2010005","DOIUrl":null,"url":null,"abstract":"Photoresponsive molecular devices can be a valuable tool to promote chemical changes in response to multiple signals, such as photons and pH, to deliver drugs or to detect physiological conditions in vivo. For example, trans-chalcones (Ct) from 4′-hydroxyflavylium (F1) and 7-hydroxyflavylium (F2) can undergo cis-trans isomerization by photoreaction into many different structures. The isomerization takes place at a slow rate in response to pH change; however, it can be done in seconds by photoreaction. In the investigation, as confirming the previous reports, 3-(2-hydroxy-phenyl)-1-(4-hydroxy-phenyl)-propenone, the trans-chalcone (CtF1) from F1, produces flavylium ions in pH = 1–4.5. Then, we further discovered that the flavylium quickly releases protons to yield the corresponding quinoidal base (A) in a solution of pH = 5.2 during irradiation with 350 nm. Meanwhile, the photolysis of 3-(2,4-dihydroxy-phenyl)-1-phenyl-propenone, the trans-chalcone (CtF2) from F2 at pH = 5.6, induces photoacid behavior by losing a proton from the trans-chalcone to generate Ct2−. The different outcomes of these nearly colorless chalcones under similar pH conditions and with the same photochemical conditions can be useful when yielding colored AH+, A, or Ct2− in a mildly acidic pH environment with temporal and spatial control using photochemical means.","PeriodicalId":10539,"journal":{"name":"Colorants","volume":"111 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"pH-Induced Orthogonal Photoresponse of trans-Chalcone Isomers and Related Compounds in Equilibria\",\"authors\":\"Jeonghee Kang, Ketevan Basilashvili, B. Yoo, Jong I. Lee\",\"doi\":\"10.3390/colorants2010005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Photoresponsive molecular devices can be a valuable tool to promote chemical changes in response to multiple signals, such as photons and pH, to deliver drugs or to detect physiological conditions in vivo. For example, trans-chalcones (Ct) from 4′-hydroxyflavylium (F1) and 7-hydroxyflavylium (F2) can undergo cis-trans isomerization by photoreaction into many different structures. The isomerization takes place at a slow rate in response to pH change; however, it can be done in seconds by photoreaction. In the investigation, as confirming the previous reports, 3-(2-hydroxy-phenyl)-1-(4-hydroxy-phenyl)-propenone, the trans-chalcone (CtF1) from F1, produces flavylium ions in pH = 1–4.5. Then, we further discovered that the flavylium quickly releases protons to yield the corresponding quinoidal base (A) in a solution of pH = 5.2 during irradiation with 350 nm. Meanwhile, the photolysis of 3-(2,4-dihydroxy-phenyl)-1-phenyl-propenone, the trans-chalcone (CtF2) from F2 at pH = 5.6, induces photoacid behavior by losing a proton from the trans-chalcone to generate Ct2−. The different outcomes of these nearly colorless chalcones under similar pH conditions and with the same photochemical conditions can be useful when yielding colored AH+, A, or Ct2− in a mildly acidic pH environment with temporal and spatial control using photochemical means.\",\"PeriodicalId\":10539,\"journal\":{\"name\":\"Colorants\",\"volume\":\"111 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-02-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Colorants\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/colorants2010005\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Colorants","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/colorants2010005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

光响应分子器件是一种有价值的工具,可以根据光子和pH等多种信号促进化学变化,以传递药物或检测体内的生理状况。例如,来自4′-羟基黄酮(F1)和7-羟基黄酮(F2)的反式查尔酮(Ct)可以通过光化学反应进行顺反异构化,形成许多不同的结构。随着pH值的变化,异构化发生缓慢;然而,它可以通过光反应在几秒钟内完成。在调查中,证实了以前的报道,3-(2-羟基苯基)-1-(4-羟基苯基)-丙烯,从F1反式查尔酮(CtF1),产生黄离子在pH = 1-4.5。然后,我们进一步发现,在pH = 5.2的溶液中,在350 nm的辐照下,黄酮类化合物快速释放质子生成相应的quinoidal碱(A)。同时,3-(2,4-二羟基苯基)-1-苯基丙烯在pH = 5.6下由F2光解生成反式查尔酮(CtF2),通过失去反式查尔酮的一个质子生成Ct2−,诱导了光酸行为。这些几乎无色的查尔酮在相似的pH条件和相同的光化学条件下的不同结果,可以用于在轻度酸性的pH环境中产生有颜色的AH+, A或Ct2 -,并利用光化学手段控制时间和空间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
pH-Induced Orthogonal Photoresponse of trans-Chalcone Isomers and Related Compounds in Equilibria
Photoresponsive molecular devices can be a valuable tool to promote chemical changes in response to multiple signals, such as photons and pH, to deliver drugs or to detect physiological conditions in vivo. For example, trans-chalcones (Ct) from 4′-hydroxyflavylium (F1) and 7-hydroxyflavylium (F2) can undergo cis-trans isomerization by photoreaction into many different structures. The isomerization takes place at a slow rate in response to pH change; however, it can be done in seconds by photoreaction. In the investigation, as confirming the previous reports, 3-(2-hydroxy-phenyl)-1-(4-hydroxy-phenyl)-propenone, the trans-chalcone (CtF1) from F1, produces flavylium ions in pH = 1–4.5. Then, we further discovered that the flavylium quickly releases protons to yield the corresponding quinoidal base (A) in a solution of pH = 5.2 during irradiation with 350 nm. Meanwhile, the photolysis of 3-(2,4-dihydroxy-phenyl)-1-phenyl-propenone, the trans-chalcone (CtF2) from F2 at pH = 5.6, induces photoacid behavior by losing a proton from the trans-chalcone to generate Ct2−. The different outcomes of these nearly colorless chalcones under similar pH conditions and with the same photochemical conditions can be useful when yielding colored AH+, A, or Ct2− in a mildly acidic pH environment with temporal and spatial control using photochemical means.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Synthesis and Characterization of Multifunctional Symmetrical Squaraine Dyes for Molecular Photovoltaics by Terminal Alkyl Chain Modifications Exploring the Role and Variability of 3d Transition Metal Complexes in Artistic Coloration through a Bottom-Up Scientific Approach Synthesis of Green Brucite [NixMg1−x(OH)2] by Incorporation of Nickel Ions in the Periclase Phase (MgO) Applied as Pigments Colorants: Moving to the Next Stage Highly Stable Hybrid Pigments Prepared from Organic Chromophores and Fluorinated Hydrotalcites
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1