基于双目立体视觉和运动场的自动车辆障碍物检测与定位

Jonathan David Estilo, M. Ramos
{"title":"基于双目立体视觉和运动场的自动车辆障碍物检测与定位","authors":"Jonathan David Estilo, M. Ramos","doi":"10.1109/ICCSCE.2016.7893615","DOIUrl":null,"url":null,"abstract":"In this work, a modularized obstacle detection system using binocular stereopsis and motion field was implemented for automated vehicles. The module used a Hardkernel Odroid XU4 Single Board Computer and two Leopard Imaging oCam OV5640 USB 3.0 Cameras. The binocular stereopsis algorithm uses Stereo Block Matching Algorithm in order to compute for disparities from spatially adjacent images. The motion field algorithm uses FAST Corner Detector and ORB Key point Descriptors in order to compute for velocity vectors from temporally adjacent images. Results show that the module was able to detect feature-rich obstacles such as vehicles and pedestrians, but it failed when it tried to detect featureless obstacles.","PeriodicalId":6540,"journal":{"name":"2016 6th IEEE International Conference on Control System, Computing and Engineering (ICCSCE)","volume":"32 1","pages":"446-451"},"PeriodicalIF":0.0000,"publicationDate":"2016-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Obstacle detection and localization in an automated vehicle using binocular stereopsis and motion field\",\"authors\":\"Jonathan David Estilo, M. Ramos\",\"doi\":\"10.1109/ICCSCE.2016.7893615\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, a modularized obstacle detection system using binocular stereopsis and motion field was implemented for automated vehicles. The module used a Hardkernel Odroid XU4 Single Board Computer and two Leopard Imaging oCam OV5640 USB 3.0 Cameras. The binocular stereopsis algorithm uses Stereo Block Matching Algorithm in order to compute for disparities from spatially adjacent images. The motion field algorithm uses FAST Corner Detector and ORB Key point Descriptors in order to compute for velocity vectors from temporally adjacent images. Results show that the module was able to detect feature-rich obstacles such as vehicles and pedestrians, but it failed when it tried to detect featureless obstacles.\",\"PeriodicalId\":6540,\"journal\":{\"name\":\"2016 6th IEEE International Conference on Control System, Computing and Engineering (ICCSCE)\",\"volume\":\"32 1\",\"pages\":\"446-451\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 6th IEEE International Conference on Control System, Computing and Engineering (ICCSCE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCSCE.2016.7893615\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 6th IEEE International Conference on Control System, Computing and Engineering (ICCSCE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCSCE.2016.7893615","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文研究了一种基于双目立体视觉和运动场的模块化自动驾驶车辆障碍物检测系统。该模块采用一台硬内核Odroid XU4单板计算机和两台Leopard Imaging oCam OV5640 USB 3.0摄像头。双目立体视觉算法采用立体块匹配算法来计算空间相邻图像之间的差异。运动场算法使用FAST角点检测器和ORB关键点描述符来计算时间相邻图像的速度向量。结果表明,该模块能够检测到特征丰富的障碍物,如车辆和行人,但在检测无特征障碍物时失败。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Obstacle detection and localization in an automated vehicle using binocular stereopsis and motion field
In this work, a modularized obstacle detection system using binocular stereopsis and motion field was implemented for automated vehicles. The module used a Hardkernel Odroid XU4 Single Board Computer and two Leopard Imaging oCam OV5640 USB 3.0 Cameras. The binocular stereopsis algorithm uses Stereo Block Matching Algorithm in order to compute for disparities from spatially adjacent images. The motion field algorithm uses FAST Corner Detector and ORB Key point Descriptors in order to compute for velocity vectors from temporally adjacent images. Results show that the module was able to detect feature-rich obstacles such as vehicles and pedestrians, but it failed when it tried to detect featureless obstacles.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
RVP-FLMS: A robust variable power fractional LMS algorithm Verification of nine-phase PMSM model in d-q coordinates with mutual couplings Gamified outcomes-based teaching and learning assessment tool for Mapúa Institute of Technology Empirical testing of prototype real-time multi-hop MAC for Wireless Sensor Networks Improving intrusion detection system detection accuracy and reducing learning time by combining selected features selection and parameters optimization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1