D. Balakrishnan, M. Gérard, D. D. Frari, S. Girod, W. Olthuis, César Pascual-García
{"title":"氧化还原活性聚合物作为可再密封微流控平台上的pH致动器","authors":"D. Balakrishnan, M. Gérard, D. D. Frari, S. Girod, W. Olthuis, César Pascual-García","doi":"10.4172/2169-0022.1000456","DOIUrl":null,"url":null,"abstract":"The electrochemical control of molecular concentrations in liquids is quite challenging because of the small ratio of interacting sites between the electrode surface and the number of molecules in the volume. Here we review our recent works aiming the control of proton concentration combining redox self-assembled monolayers with a modified platform. We used Aminothiolphenol, to obtain coatings with quasi-reversible redox states able to exchange protons with the electrolyte at low voltages using different polymerization methods. We studied their charge exchange during different cycles, which would provide us the possibility to use different cycles of reactions controlled by acidity. We achieved the control of proton concentration over the liquid with an efficient design of the microfluidic device to control the diffusion of protons avoiding the reduction of hydrogen at the counter electrode and providing long lasting stability to carry control of chemical reactions during several tenths of minutes. The experiments were carried out in aqueous environment using a pH fluorescence marker to track the pH that allowed us to monitor the proton concentration down to pH 5, where the fluorescence molecule lost its sensitivity, while calculations indicate that the pH can be below 1.","PeriodicalId":16326,"journal":{"name":"Journal of Material Sciences & Engineering","volume":"321 1","pages":"1-7"},"PeriodicalIF":0.0000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Redox Active Polymer as a pH Actuator on a Re-Sealable Microfluidic Platform\",\"authors\":\"D. Balakrishnan, M. Gérard, D. D. Frari, S. Girod, W. Olthuis, César Pascual-García\",\"doi\":\"10.4172/2169-0022.1000456\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The electrochemical control of molecular concentrations in liquids is quite challenging because of the small ratio of interacting sites between the electrode surface and the number of molecules in the volume. Here we review our recent works aiming the control of proton concentration combining redox self-assembled monolayers with a modified platform. We used Aminothiolphenol, to obtain coatings with quasi-reversible redox states able to exchange protons with the electrolyte at low voltages using different polymerization methods. We studied their charge exchange during different cycles, which would provide us the possibility to use different cycles of reactions controlled by acidity. We achieved the control of proton concentration over the liquid with an efficient design of the microfluidic device to control the diffusion of protons avoiding the reduction of hydrogen at the counter electrode and providing long lasting stability to carry control of chemical reactions during several tenths of minutes. The experiments were carried out in aqueous environment using a pH fluorescence marker to track the pH that allowed us to monitor the proton concentration down to pH 5, where the fluorescence molecule lost its sensitivity, while calculations indicate that the pH can be below 1.\",\"PeriodicalId\":16326,\"journal\":{\"name\":\"Journal of Material Sciences & Engineering\",\"volume\":\"321 1\",\"pages\":\"1-7\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Material Sciences & Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4172/2169-0022.1000456\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Material Sciences & Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4172/2169-0022.1000456","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Redox Active Polymer as a pH Actuator on a Re-Sealable Microfluidic Platform
The electrochemical control of molecular concentrations in liquids is quite challenging because of the small ratio of interacting sites between the electrode surface and the number of molecules in the volume. Here we review our recent works aiming the control of proton concentration combining redox self-assembled monolayers with a modified platform. We used Aminothiolphenol, to obtain coatings with quasi-reversible redox states able to exchange protons with the electrolyte at low voltages using different polymerization methods. We studied their charge exchange during different cycles, which would provide us the possibility to use different cycles of reactions controlled by acidity. We achieved the control of proton concentration over the liquid with an efficient design of the microfluidic device to control the diffusion of protons avoiding the reduction of hydrogen at the counter electrode and providing long lasting stability to carry control of chemical reactions during several tenths of minutes. The experiments were carried out in aqueous environment using a pH fluorescence marker to track the pH that allowed us to monitor the proton concentration down to pH 5, where the fluorescence molecule lost its sensitivity, while calculations indicate that the pH can be below 1.