H. Fujii, K. Toprasertpong, Kentaroh Watanabe, M. Sugiyama, Y. Nakano
{"title":"多量子阱太阳能电池载流子收集效率的综合验证:为了更有效和直接地评估载流子输运动力学","authors":"H. Fujii, K. Toprasertpong, Kentaroh Watanabe, M. Sugiyama, Y. Nakano","doi":"10.1109/PVSC.2013.6744146","DOIUrl":null,"url":null,"abstract":"Carrier Collection Efficiency (CCE) is proposed as an effective evaluation measure of carrier transport in quantum nanostructure solar cells. CCE can be estimated by normalizing the illumination-induced current enhancement to its saturation value at reverse bias. The derivation procedure of CCE is experimentally validated by examining the bias-dependency of light absorption, and investigating the balance between the absorbed photons and collected carriers at reverse bias. The effect of AM1.5 bias-illumination for CCE characterization was also studied, and found to be much significant for more accurate evaluation of carrier dynamics during actual device operation under sunlight.","PeriodicalId":6350,"journal":{"name":"2013 IEEE 39th Photovoltaic Specialists Conference (PVSC)","volume":"108 1","pages":"0277-0280"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Comprehensive validation of Carrier Collection Efficiency in multiple quantum well solar cells: For more effective and direct evaluation of carrier transport dynamics\",\"authors\":\"H. Fujii, K. Toprasertpong, Kentaroh Watanabe, M. Sugiyama, Y. Nakano\",\"doi\":\"10.1109/PVSC.2013.6744146\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Carrier Collection Efficiency (CCE) is proposed as an effective evaluation measure of carrier transport in quantum nanostructure solar cells. CCE can be estimated by normalizing the illumination-induced current enhancement to its saturation value at reverse bias. The derivation procedure of CCE is experimentally validated by examining the bias-dependency of light absorption, and investigating the balance between the absorbed photons and collected carriers at reverse bias. The effect of AM1.5 bias-illumination for CCE characterization was also studied, and found to be much significant for more accurate evaluation of carrier dynamics during actual device operation under sunlight.\",\"PeriodicalId\":6350,\"journal\":{\"name\":\"2013 IEEE 39th Photovoltaic Specialists Conference (PVSC)\",\"volume\":\"108 1\",\"pages\":\"0277-0280\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE 39th Photovoltaic Specialists Conference (PVSC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PVSC.2013.6744146\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE 39th Photovoltaic Specialists Conference (PVSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PVSC.2013.6744146","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Comprehensive validation of Carrier Collection Efficiency in multiple quantum well solar cells: For more effective and direct evaluation of carrier transport dynamics
Carrier Collection Efficiency (CCE) is proposed as an effective evaluation measure of carrier transport in quantum nanostructure solar cells. CCE can be estimated by normalizing the illumination-induced current enhancement to its saturation value at reverse bias. The derivation procedure of CCE is experimentally validated by examining the bias-dependency of light absorption, and investigating the balance between the absorbed photons and collected carriers at reverse bias. The effect of AM1.5 bias-illumination for CCE characterization was also studied, and found to be much significant for more accurate evaluation of carrier dynamics during actual device operation under sunlight.