{"title":"下行LiFi系统中以用户为中心的组合传输动态聚类设计","authors":"Weibin Ma, Lin Zhang, Furong Fang, Jing Bian","doi":"10.1109/VTCFall.2019.8890975","DOIUrl":null,"url":null,"abstract":"Light fidelity (LiFi) provides a promising solution for indoor high-speed wireless transmissions. However, the dense deployment of access points (APs) and the unity frequency reuse in LiFi system may induce the inter-cell interference (ICI) issue. In this paper, we consider the combined transmission (CT) which converts harmful interference to useful signals and thereby combats the ICI, and propose a dynamic user-centric clustering scheme for the downlink LiFi system. In our design, with the objective of maximizing the system throughput under proportional fairness constraints, the CT clustering is formulated as a mixed-integer non- linear programming (MINLP) problem. Then we set up an exact potential game (EPG) model, where the Nash equilibrium is found via the best response algorithm, to provide a suboptimal solution to the MINLP problem. Simulation results demonstrate that the LiFi system using our presented scheme exhibits a higher throughput and a better satisfaction degree than that employing the single-point transmission (SPT) scheme.","PeriodicalId":6713,"journal":{"name":"2019 IEEE 90th Vehicular Technology Conference (VTC2019-Fall)","volume":"82 1","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Dynamic User-Centric Clustering Design for Combined Transmission in Downlink LiFi System\",\"authors\":\"Weibin Ma, Lin Zhang, Furong Fang, Jing Bian\",\"doi\":\"10.1109/VTCFall.2019.8890975\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Light fidelity (LiFi) provides a promising solution for indoor high-speed wireless transmissions. However, the dense deployment of access points (APs) and the unity frequency reuse in LiFi system may induce the inter-cell interference (ICI) issue. In this paper, we consider the combined transmission (CT) which converts harmful interference to useful signals and thereby combats the ICI, and propose a dynamic user-centric clustering scheme for the downlink LiFi system. In our design, with the objective of maximizing the system throughput under proportional fairness constraints, the CT clustering is formulated as a mixed-integer non- linear programming (MINLP) problem. Then we set up an exact potential game (EPG) model, where the Nash equilibrium is found via the best response algorithm, to provide a suboptimal solution to the MINLP problem. Simulation results demonstrate that the LiFi system using our presented scheme exhibits a higher throughput and a better satisfaction degree than that employing the single-point transmission (SPT) scheme.\",\"PeriodicalId\":6713,\"journal\":{\"name\":\"2019 IEEE 90th Vehicular Technology Conference (VTC2019-Fall)\",\"volume\":\"82 1\",\"pages\":\"1-5\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE 90th Vehicular Technology Conference (VTC2019-Fall)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VTCFall.2019.8890975\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 90th Vehicular Technology Conference (VTC2019-Fall)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VTCFall.2019.8890975","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Dynamic User-Centric Clustering Design for Combined Transmission in Downlink LiFi System
Light fidelity (LiFi) provides a promising solution for indoor high-speed wireless transmissions. However, the dense deployment of access points (APs) and the unity frequency reuse in LiFi system may induce the inter-cell interference (ICI) issue. In this paper, we consider the combined transmission (CT) which converts harmful interference to useful signals and thereby combats the ICI, and propose a dynamic user-centric clustering scheme for the downlink LiFi system. In our design, with the objective of maximizing the system throughput under proportional fairness constraints, the CT clustering is formulated as a mixed-integer non- linear programming (MINLP) problem. Then we set up an exact potential game (EPG) model, where the Nash equilibrium is found via the best response algorithm, to provide a suboptimal solution to the MINLP problem. Simulation results demonstrate that the LiFi system using our presented scheme exhibits a higher throughput and a better satisfaction degree than that employing the single-point transmission (SPT) scheme.