波纹挡板对燃烧室声学特性影响的数值研究

IF 1 3区 物理与天体物理 Q4 ACOUSTICS Acta Acustica Pub Date : 2022-01-01 DOI:10.1051/aacus/2022031
Hamid Salarvand, A. Shateri, A. A. Nadooshan, I. Karimipour
{"title":"波纹挡板对燃烧室声学特性影响的数值研究","authors":"Hamid Salarvand, A. Shateri, A. A. Nadooshan, I. Karimipour","doi":"10.1051/aacus/2022031","DOIUrl":null,"url":null,"abstract":"Combustion instability caused by the amplification of sound waves is called acoustic or high-frequency instability, which can cause severe damage to the system. Adding baffles is one of the methods of passive instability control. Depending on the geometry of the chamber and the type of application, different baffles are used. In this research, the effect of the longitudinal corrugated baffle on the acoustic characteristics of the combustion chamber is investigated numerically. The quality of each baffle configuration is determined by examining their influence on the essential parameters such as natural frequency shift and damping factor. Modal and harmonic analyses for the acoustic field are conducted to investigate the effect of baffles installed in the combustion chamber. According to the obtained results, the addition of baffle shifts resonant frequencies. In other words, a combustor with baffles is more effective in controlling the instabilities than that without baffles. In addition, it increases the damping factor in the first–second circumferential (tangential) modes, making the system more stable. Also, a quantitative assessment of the acoustics by adding baffles shows that combustion chamber finds a better condition from stability point of view, and the bandwidth increase affects the combustion stability.","PeriodicalId":48486,"journal":{"name":"Acta Acustica","volume":"8 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Numerical study of the effect of the corrugated baffle on the acoustic characteristics of the combustion chamber\",\"authors\":\"Hamid Salarvand, A. Shateri, A. A. Nadooshan, I. Karimipour\",\"doi\":\"10.1051/aacus/2022031\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Combustion instability caused by the amplification of sound waves is called acoustic or high-frequency instability, which can cause severe damage to the system. Adding baffles is one of the methods of passive instability control. Depending on the geometry of the chamber and the type of application, different baffles are used. In this research, the effect of the longitudinal corrugated baffle on the acoustic characteristics of the combustion chamber is investigated numerically. The quality of each baffle configuration is determined by examining their influence on the essential parameters such as natural frequency shift and damping factor. Modal and harmonic analyses for the acoustic field are conducted to investigate the effect of baffles installed in the combustion chamber. According to the obtained results, the addition of baffle shifts resonant frequencies. In other words, a combustor with baffles is more effective in controlling the instabilities than that without baffles. In addition, it increases the damping factor in the first–second circumferential (tangential) modes, making the system more stable. Also, a quantitative assessment of the acoustics by adding baffles shows that combustion chamber finds a better condition from stability point of view, and the bandwidth increase affects the combustion stability.\",\"PeriodicalId\":48486,\"journal\":{\"name\":\"Acta Acustica\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Acustica\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1051/aacus/2022031\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Acustica","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1051/aacus/2022031","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 1

摘要

由声波放大引起的燃烧不稳定性称为声学不稳定性或高频不稳定性,可对系统造成严重的破坏。加挡板是被动失稳控制的一种方法。根据腔室的几何形状和应用类型,使用不同的挡板。本文采用数值方法研究了纵向波纹折流板对燃烧室声学特性的影响。通过考察其对固有频移和阻尼系数等基本参数的影响来确定每种挡板结构的质量。对燃烧室中设置挡板的影响进行了声场模态分析和谐波分析。根据得到的结果,挡板的加入改变了谐振频率。换句话说,有挡板的燃烧室比没有挡板的燃烧室更有效地控制不稳定性。此外,它增加了第一-第二周(切向)模式的阻尼系数,使系统更加稳定。同时,通过增加挡板对燃烧室的稳定性进行了定量评价,表明燃烧室的稳定性得到了改善,带宽的增加影响了燃烧的稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Numerical study of the effect of the corrugated baffle on the acoustic characteristics of the combustion chamber
Combustion instability caused by the amplification of sound waves is called acoustic or high-frequency instability, which can cause severe damage to the system. Adding baffles is one of the methods of passive instability control. Depending on the geometry of the chamber and the type of application, different baffles are used. In this research, the effect of the longitudinal corrugated baffle on the acoustic characteristics of the combustion chamber is investigated numerically. The quality of each baffle configuration is determined by examining their influence on the essential parameters such as natural frequency shift and damping factor. Modal and harmonic analyses for the acoustic field are conducted to investigate the effect of baffles installed in the combustion chamber. According to the obtained results, the addition of baffle shifts resonant frequencies. In other words, a combustor with baffles is more effective in controlling the instabilities than that without baffles. In addition, it increases the damping factor in the first–second circumferential (tangential) modes, making the system more stable. Also, a quantitative assessment of the acoustics by adding baffles shows that combustion chamber finds a better condition from stability point of view, and the bandwidth increase affects the combustion stability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Acta Acustica
Acta Acustica ACOUSTICS-
CiteScore
2.80
自引率
21.40%
发文量
0
审稿时长
12 weeks
期刊介绍: Acta Acustica, the Journal of the European Acoustics Association (EAA). After the publication of its Journal Acta Acustica from 1993 to 1995, the EAA published Acta Acustica united with Acustica from 1996 to 2019. From 2020, the EAA decided to publish a journal in full Open Access. See Article Processing charges. Acta Acustica reports on original scientific research in acoustics and on engineering applications. The journal considers review papers, scientific papers, technical and applied papers, short communications, letters to the editor. From time to time, special issues and review articles are also published. For book reviews or doctoral thesis abstracts, please contact the Editor in Chief.
期刊最新文献
Auralization based on multi-perspective ambisonic room impulse responses Amplitude-dependent modal coefficients accounting for localized nonlinear losses in a time-domain integration of woodwind model A direct-hybrid CFD/CAA method based on lattice Boltzmann and acoustic perturbation equations Acta Acustica: State of art and achievements after 3 years Impact of wearing a head-mounted display on localization accuracy of real sound sources
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1