通过添加氢和可变压缩比的替代火花塞减少SI发动机的排放

O. Baş, M. Akar, H. Serin
{"title":"通过添加氢和可变压缩比的替代火花塞减少SI发动机的排放","authors":"O. Baş, M. Akar, H. Serin","doi":"10.18245/ijaet.706956","DOIUrl":null,"url":null,"abstract":"As a consequence of the emissions-cheating scandals and more strict emission regulations enforce researchers to reduce emissions out and find alternative fuels for SI engines. For this purpose, various spark plugs are available in the market with different electrode materials. However, they have not been tested together with different engine parameters. Hence, emissions out from a variable compression spark-ignited engine with different spark plugs and hydrogen enrichment were the scope of this study. The tests were conducted with a four-stroke, single-cylinder, naturally aspirated, variable compression ratio (VCR) engine. Two different compression ratios (CR) of 8.5:1 and 10:1 at maximum brake torque (MBT) spark timing applied to assess the effects of different spark plugs and hydrogen usage at different engine loads. Copper, iridium and platinum spark plugs were tested for each experiment condition. Also, hydrogen was added through the intake manifold with flow rates of 0, 2 and 4 l/min to enhance the combustion of the VCR engine. Carbon monoxide (CO), carbon dioxide (CO2), nitrogen oxides (NOx) and unburned hydrocarbons (UHC) emission values were measured in this study. According to test results, with iridium and platinum spark plug usage, hydrogen addition and higher CR, the engine emitted lower CO and UHC at all engine loads. However, a higher amount of CO2 was emitted because of increased completeness of the combustion and the amount of NOx emissions rose due to increment in-cylinder temperatures. These variances were more apparent with platinum spark plug usage compared to the iridium spark plug. As a result, the usage of iridium and platinum spark plugs were shown lower incomplete emissions products out, except NOx emissions.","PeriodicalId":13841,"journal":{"name":"International Journal of Automotive Engineering and Technologies","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Reducing emissions of an SI engine by alternative spark plugs with hydrogen addition and variable compression ratio\",\"authors\":\"O. Baş, M. Akar, H. Serin\",\"doi\":\"10.18245/ijaet.706956\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As a consequence of the emissions-cheating scandals and more strict emission regulations enforce researchers to reduce emissions out and find alternative fuels for SI engines. For this purpose, various spark plugs are available in the market with different electrode materials. However, they have not been tested together with different engine parameters. Hence, emissions out from a variable compression spark-ignited engine with different spark plugs and hydrogen enrichment were the scope of this study. The tests were conducted with a four-stroke, single-cylinder, naturally aspirated, variable compression ratio (VCR) engine. Two different compression ratios (CR) of 8.5:1 and 10:1 at maximum brake torque (MBT) spark timing applied to assess the effects of different spark plugs and hydrogen usage at different engine loads. Copper, iridium and platinum spark plugs were tested for each experiment condition. Also, hydrogen was added through the intake manifold with flow rates of 0, 2 and 4 l/min to enhance the combustion of the VCR engine. Carbon monoxide (CO), carbon dioxide (CO2), nitrogen oxides (NOx) and unburned hydrocarbons (UHC) emission values were measured in this study. According to test results, with iridium and platinum spark plug usage, hydrogen addition and higher CR, the engine emitted lower CO and UHC at all engine loads. However, a higher amount of CO2 was emitted because of increased completeness of the combustion and the amount of NOx emissions rose due to increment in-cylinder temperatures. These variances were more apparent with platinum spark plug usage compared to the iridium spark plug. As a result, the usage of iridium and platinum spark plugs were shown lower incomplete emissions products out, except NOx emissions.\",\"PeriodicalId\":13841,\"journal\":{\"name\":\"International Journal of Automotive Engineering and Technologies\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Automotive Engineering and Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18245/ijaet.706956\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Automotive Engineering and Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18245/ijaet.706956","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

由于排放作弊丑闻和更严格的排放法规迫使研究人员减少排放,并为SI发动机寻找替代燃料。为此,市场上有不同电极材料的各种火花塞。然而,它们尚未与不同的发动机参数一起进行测试。因此,采用不同火花塞和氢气富集的可变压缩火花点燃发动机的排放是本研究的范围。测试是在四冲程、单缸、自然吸气、可变压缩比(VCR)发动机上进行的。在最大制动扭矩(MBT)火花正时下,采用8.5:1和10:1两种不同的压缩比(CR)来评估不同火花塞和不同发动机负载下氢气使用量的影响。对铜、铱和铂火花塞进行了不同条件下的测试。此外,通过进气歧管以0、2和4升/分钟的流量添加氢气,以增强VCR发动机的燃烧。本研究测量了一氧化碳(CO)、二氧化碳(CO2)、氮氧化物(NOx)和未燃烧碳氢化合物(UHC)的排放值。测试结果表明,在使用铱和铂火花塞、添加氢气和提高CR的情况下,发动机在所有发动机负荷下排放的CO和UHC都较低。然而,由于燃烧的完整性增加,二氧化碳排放量增加,而由于缸内温度的升高,氮氧化物排放量增加。这些差异更明显与铂火花塞的使用相比,铱火花塞。结果表明,使用铱和铂火花塞的产品不完全排放较低,NOx排放除外。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Reducing emissions of an SI engine by alternative spark plugs with hydrogen addition and variable compression ratio
As a consequence of the emissions-cheating scandals and more strict emission regulations enforce researchers to reduce emissions out and find alternative fuels for SI engines. For this purpose, various spark plugs are available in the market with different electrode materials. However, they have not been tested together with different engine parameters. Hence, emissions out from a variable compression spark-ignited engine with different spark plugs and hydrogen enrichment were the scope of this study. The tests were conducted with a four-stroke, single-cylinder, naturally aspirated, variable compression ratio (VCR) engine. Two different compression ratios (CR) of 8.5:1 and 10:1 at maximum brake torque (MBT) spark timing applied to assess the effects of different spark plugs and hydrogen usage at different engine loads. Copper, iridium and platinum spark plugs were tested for each experiment condition. Also, hydrogen was added through the intake manifold with flow rates of 0, 2 and 4 l/min to enhance the combustion of the VCR engine. Carbon monoxide (CO), carbon dioxide (CO2), nitrogen oxides (NOx) and unburned hydrocarbons (UHC) emission values were measured in this study. According to test results, with iridium and platinum spark plug usage, hydrogen addition and higher CR, the engine emitted lower CO and UHC at all engine loads. However, a higher amount of CO2 was emitted because of increased completeness of the combustion and the amount of NOx emissions rose due to increment in-cylinder temperatures. These variances were more apparent with platinum spark plug usage compared to the iridium spark plug. As a result, the usage of iridium and platinum spark plugs were shown lower incomplete emissions products out, except NOx emissions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Biodiesel production from waste frying oil by electrochemical method using stainless steel electrode Numerical investigation of the thermal and acoustic effect of material variations on the exhaust muffler Experimental evaluation of gasoline-hexane fuel blends usage in a spark ignition engine Suspension system design for pedal-assisted cargo E-quadricycle Reducing fuel consumption of a light-duty vehicle by incorporating CuO nanoparticles in compressor lubricant of air-conditioning system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1