{"title":"台风登陆强降雨时波浪作用密度的诊断分析","authors":"Zhou Guan-bo, Jiao Ya-Yin, Xu Ying-long","doi":"10.46267/j.1006-8775.2022.027","DOIUrl":null,"url":null,"abstract":": Based on prior investigation, this work defined a new thermodynamic shear advection parameter, which combines the vertical component of convective vorticity vector, horizontal divergence, and vertical gradient of generalized potential temperature. The interaction between waves and fundamental states was computed for the heavy-rainfall event generated by landfalling typhoon “ Morakot ” . The analysis data was produced by ADAS [ARPS (Advanced Regional Prediction System) Data Analysis System] combined with the NCEP/NCAR final analysis data (1°×1°, 26 vertical pressure levels and 6-hour interval) with the routine observations of surface and sounding. Because it may describe the typical vertical structure of dynamical and thermodynamic fields, the result indicates that the parameter is intimately related to precipitation systems. The parameter ’ s positive high-value area closely matches the reported 6-hour accumulated surface rainfall. And the statistical analysis reveals a certain correspondence between the thermodynamic shear advection parameter and the observed 6-hour accumulated surface rainfall in the summer of 2009. This implies that the parameter can predict and indicate the rainfall area, as well as the initiation and evolution of precipitation systems.","PeriodicalId":17432,"journal":{"name":"热带气象学报","volume":"85 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Diagnostic Analysis of Wave Action Density During Heavy Rainfall Caused by Landfalling Typhoon\",\"authors\":\"Zhou Guan-bo, Jiao Ya-Yin, Xu Ying-long\",\"doi\":\"10.46267/j.1006-8775.2022.027\",\"DOIUrl\":null,\"url\":null,\"abstract\":\": Based on prior investigation, this work defined a new thermodynamic shear advection parameter, which combines the vertical component of convective vorticity vector, horizontal divergence, and vertical gradient of generalized potential temperature. The interaction between waves and fundamental states was computed for the heavy-rainfall event generated by landfalling typhoon “ Morakot ” . The analysis data was produced by ADAS [ARPS (Advanced Regional Prediction System) Data Analysis System] combined with the NCEP/NCAR final analysis data (1°×1°, 26 vertical pressure levels and 6-hour interval) with the routine observations of surface and sounding. Because it may describe the typical vertical structure of dynamical and thermodynamic fields, the result indicates that the parameter is intimately related to precipitation systems. The parameter ’ s positive high-value area closely matches the reported 6-hour accumulated surface rainfall. And the statistical analysis reveals a certain correspondence between the thermodynamic shear advection parameter and the observed 6-hour accumulated surface rainfall in the summer of 2009. This implies that the parameter can predict and indicate the rainfall area, as well as the initiation and evolution of precipitation systems.\",\"PeriodicalId\":17432,\"journal\":{\"name\":\"热带气象学报\",\"volume\":\"85 1\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"热带气象学报\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.46267/j.1006-8775.2022.027\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"热带气象学报","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.46267/j.1006-8775.2022.027","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0
摘要
在前人研究的基础上,定义了一个新的热力剪切平流参数,该参数结合了对流涡度矢量的垂直分量、水平辐散度和广义位温的垂直梯度。计算了台风莫拉克登陆引起的强降雨事件中波浪与基态的相互作用。分析数据由ADAS [ARPS (Advanced Regional Prediction System) data analysis System]结合NCEP/NCAR最终分析数据(1°×1°,26个垂直压力级,间隔6小时)和常规地面和探测观测数据生成。由于它可以描述典型的动力场和热力学场的垂直结构,结果表明该参数与降水系统密切相关。该参数的正高值区与报告的6小时累积地面降雨量非常接近。统计分析表明,热力切变平流参数与2009年夏季6 h地面累计降水具有一定的对应关系。这意味着该参数可以预测和指示降雨区域,以及降水系统的发生和演变。
Diagnostic Analysis of Wave Action Density During Heavy Rainfall Caused by Landfalling Typhoon
: Based on prior investigation, this work defined a new thermodynamic shear advection parameter, which combines the vertical component of convective vorticity vector, horizontal divergence, and vertical gradient of generalized potential temperature. The interaction between waves and fundamental states was computed for the heavy-rainfall event generated by landfalling typhoon “ Morakot ” . The analysis data was produced by ADAS [ARPS (Advanced Regional Prediction System) Data Analysis System] combined with the NCEP/NCAR final analysis data (1°×1°, 26 vertical pressure levels and 6-hour interval) with the routine observations of surface and sounding. Because it may describe the typical vertical structure of dynamical and thermodynamic fields, the result indicates that the parameter is intimately related to precipitation systems. The parameter ’ s positive high-value area closely matches the reported 6-hour accumulated surface rainfall. And the statistical analysis reveals a certain correspondence between the thermodynamic shear advection parameter and the observed 6-hour accumulated surface rainfall in the summer of 2009. This implies that the parameter can predict and indicate the rainfall area, as well as the initiation and evolution of precipitation systems.