{"title":"Co0.8-x Nix Zn0.2 Fe2O4铁氧体的合成及尺寸-应变图表征","authors":"R. Kolekar, S. B. Kapatkar, S. Mathad","doi":"10.2478/achi-2019-0006","DOIUrl":null,"url":null,"abstract":"Abstract The Co-Zn ferrite (x=0.00) and Nickel doped Co-Zn ferrites (x=0.24) was synthesized by low cost solid state reaction method and characterized by XRD technique. The X-ray diffraction results for the samples showed the formation of single phase cubic spinel. The lattice constant and particle size for Co-Zn ferrite(x=0.00) is found to be 8.3465 Å and 26.72 nm and for Nickel doped (x=0.24) it is 8.3440 Å and 24.21nm. Micro strain (ε), Dislocation density(ρD), Hopping lengths (LA and LB), Bond lengths (A - O and B-O), Ionic radii (rA and rB), Texture coefficients (Thkl) and Standard deviation (σ) are also reported. The particle size is confirmed by scanning electron microscope (SEM). The Williamson-Hall plot and stress-strain plot also employed to understand the mechanical properties of materials.","PeriodicalId":6958,"journal":{"name":"Acta Chemica Iasi","volume":"9 1","pages":"73 - 86"},"PeriodicalIF":0.4000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Synthesis and Characterization of Co0.8-x Nix Zn0.2 Fe2O4 Ferrites by Williamson–Hall and Size–Strain Plot Methods\",\"authors\":\"R. Kolekar, S. B. Kapatkar, S. Mathad\",\"doi\":\"10.2478/achi-2019-0006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The Co-Zn ferrite (x=0.00) and Nickel doped Co-Zn ferrites (x=0.24) was synthesized by low cost solid state reaction method and characterized by XRD technique. The X-ray diffraction results for the samples showed the formation of single phase cubic spinel. The lattice constant and particle size for Co-Zn ferrite(x=0.00) is found to be 8.3465 Å and 26.72 nm and for Nickel doped (x=0.24) it is 8.3440 Å and 24.21nm. Micro strain (ε), Dislocation density(ρD), Hopping lengths (LA and LB), Bond lengths (A - O and B-O), Ionic radii (rA and rB), Texture coefficients (Thkl) and Standard deviation (σ) are also reported. The particle size is confirmed by scanning electron microscope (SEM). The Williamson-Hall plot and stress-strain plot also employed to understand the mechanical properties of materials.\",\"PeriodicalId\":6958,\"journal\":{\"name\":\"Acta Chemica Iasi\",\"volume\":\"9 1\",\"pages\":\"73 - 86\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2019-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Chemica Iasi\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/achi-2019-0006\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Chemica Iasi","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/achi-2019-0006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Synthesis and Characterization of Co0.8-x Nix Zn0.2 Fe2O4 Ferrites by Williamson–Hall and Size–Strain Plot Methods
Abstract The Co-Zn ferrite (x=0.00) and Nickel doped Co-Zn ferrites (x=0.24) was synthesized by low cost solid state reaction method and characterized by XRD technique. The X-ray diffraction results for the samples showed the formation of single phase cubic spinel. The lattice constant and particle size for Co-Zn ferrite(x=0.00) is found to be 8.3465 Å and 26.72 nm and for Nickel doped (x=0.24) it is 8.3440 Å and 24.21nm. Micro strain (ε), Dislocation density(ρD), Hopping lengths (LA and LB), Bond lengths (A - O and B-O), Ionic radii (rA and rB), Texture coefficients (Thkl) and Standard deviation (σ) are also reported. The particle size is confirmed by scanning electron microscope (SEM). The Williamson-Hall plot and stress-strain plot also employed to understand the mechanical properties of materials.