基于依赖语法规则的人际关系抽取本体

Long He, Likun Qiu
{"title":"基于依赖语法规则的人际关系抽取本体","authors":"Long He, Likun Qiu","doi":"10.1145/3106426.3109050","DOIUrl":null,"url":null,"abstract":"This paper proposed a novel scheme for extracting character relation from unstructured text based on dependency grammar rules. First of all, we took the Three Kingdoms characters as our research object, then selected articles containing target relationships and thus constructed a corpus consisting of 1000 sentences. Secondly, We analyzed the corpus and developed a set of dependent grammar rules for relation extraction. Finally, we proposed a system, which makes it possible for computers to automatically extract and identify character relationships.","PeriodicalId":20685,"journal":{"name":"Proceedings of the 7th International Conference on Web Intelligence, Mining and Semantics","volume":"33 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2017-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Ontology of human relation extraction based on dependency syntax rules\",\"authors\":\"Long He, Likun Qiu\",\"doi\":\"10.1145/3106426.3109050\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposed a novel scheme for extracting character relation from unstructured text based on dependency grammar rules. First of all, we took the Three Kingdoms characters as our research object, then selected articles containing target relationships and thus constructed a corpus consisting of 1000 sentences. Secondly, We analyzed the corpus and developed a set of dependent grammar rules for relation extraction. Finally, we proposed a system, which makes it possible for computers to automatically extract and identify character relationships.\",\"PeriodicalId\":20685,\"journal\":{\"name\":\"Proceedings of the 7th International Conference on Web Intelligence, Mining and Semantics\",\"volume\":\"33 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 7th International Conference on Web Intelligence, Mining and Semantics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3106426.3109050\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 7th International Conference on Web Intelligence, Mining and Semantics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3106426.3109050","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

提出了一种基于依赖语法规则的非结构化文本字符关系提取方法。首先,我们以三国文字为研究对象,选取含有目标关系的文章,构建了一个1000句的语料库。其次,我们对语料库进行了分析,并开发了一套用于关系抽取的依赖语法规则。最后,我们提出了一个系统,使计算机能够自动提取和识别字符关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Ontology of human relation extraction based on dependency syntax rules
This paper proposed a novel scheme for extracting character relation from unstructured text based on dependency grammar rules. First of all, we took the Three Kingdoms characters as our research object, then selected articles containing target relationships and thus constructed a corpus consisting of 1000 sentences. Secondly, We analyzed the corpus and developed a set of dependent grammar rules for relation extraction. Finally, we proposed a system, which makes it possible for computers to automatically extract and identify character relationships.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
WIMS 2020: The 10th International Conference on Web Intelligence, Mining and Semantics, Biarritz, France, June 30 - July 3, 2020 A deep learning approach for web service interactions Partial sums-based P-Rank computation in information networks Mining ordinal data under human response uncertainty Haste makes waste: a case to favour voting bots
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1