{"title":"风洞模型试验中FPSO上层平台模块的物理建模与简化","authors":"Z. Huang, Hyun Joe Kim","doi":"10.1115/omae2021-63459","DOIUrl":null,"url":null,"abstract":"\n To evaluate wind load on offshore structures, such as FPSO’s, wind tunnel model test is a common industry practice. Configuration of topsides structures and equipment can be very complex, and it is a practical challenge to model all the structural details for wind tunnel model tests. Sometimes, there may be significant modifications to the topsides over FPSO operation life cycle and there may not be detailed topsides drawing for wind tunnel to use in physical model construction. In practice, wind tunnel laboratories have to simplify physical topsides models. They also use metal meshes to cover the topsides modules to compensate for the force reduction due to the simplification. In order to help establish physical modeling practices of wind tunnel model test, we performed extensive tests using a single topsides module. The original topsides module without simplification and mesh was tested first. Then, two simplifications were adopted in the physical model construction. The module was covered with and without metal mesh of different porosities. Thorough test quality assurance (QA) and quality control (QC) were performed to ensure data quality. Test setup, quality assurance (QA) and results are presented in the paper. The results can be used not only for appropriate physical modeling practices of complex topsides modules, but also for validation of numerical predictions such as Computational Fluid Dynamics (CFD), as well as empirical formulas.","PeriodicalId":23502,"journal":{"name":"Volume 1: Offshore Technology","volume":"128 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Physical Modeling and Simplification of FPSO Topsides Module in Wind Tunnel Model Tests\",\"authors\":\"Z. Huang, Hyun Joe Kim\",\"doi\":\"10.1115/omae2021-63459\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n To evaluate wind load on offshore structures, such as FPSO’s, wind tunnel model test is a common industry practice. Configuration of topsides structures and equipment can be very complex, and it is a practical challenge to model all the structural details for wind tunnel model tests. Sometimes, there may be significant modifications to the topsides over FPSO operation life cycle and there may not be detailed topsides drawing for wind tunnel to use in physical model construction. In practice, wind tunnel laboratories have to simplify physical topsides models. They also use metal meshes to cover the topsides modules to compensate for the force reduction due to the simplification. In order to help establish physical modeling practices of wind tunnel model test, we performed extensive tests using a single topsides module. The original topsides module without simplification and mesh was tested first. Then, two simplifications were adopted in the physical model construction. The module was covered with and without metal mesh of different porosities. Thorough test quality assurance (QA) and quality control (QC) were performed to ensure data quality. Test setup, quality assurance (QA) and results are presented in the paper. The results can be used not only for appropriate physical modeling practices of complex topsides modules, but also for validation of numerical predictions such as Computational Fluid Dynamics (CFD), as well as empirical formulas.\",\"PeriodicalId\":23502,\"journal\":{\"name\":\"Volume 1: Offshore Technology\",\"volume\":\"128 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 1: Offshore Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/omae2021-63459\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 1: Offshore Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/omae2021-63459","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Physical Modeling and Simplification of FPSO Topsides Module in Wind Tunnel Model Tests
To evaluate wind load on offshore structures, such as FPSO’s, wind tunnel model test is a common industry practice. Configuration of topsides structures and equipment can be very complex, and it is a practical challenge to model all the structural details for wind tunnel model tests. Sometimes, there may be significant modifications to the topsides over FPSO operation life cycle and there may not be detailed topsides drawing for wind tunnel to use in physical model construction. In practice, wind tunnel laboratories have to simplify physical topsides models. They also use metal meshes to cover the topsides modules to compensate for the force reduction due to the simplification. In order to help establish physical modeling practices of wind tunnel model test, we performed extensive tests using a single topsides module. The original topsides module without simplification and mesh was tested first. Then, two simplifications were adopted in the physical model construction. The module was covered with and without metal mesh of different porosities. Thorough test quality assurance (QA) and quality control (QC) were performed to ensure data quality. Test setup, quality assurance (QA) and results are presented in the paper. The results can be used not only for appropriate physical modeling practices of complex topsides modules, but also for validation of numerical predictions such as Computational Fluid Dynamics (CFD), as well as empirical formulas.