火成岩油气水力压裂的前景、挑战和发展方向

Agnes Anuka, Celestine A. Udie, G. Aquah
{"title":"火成岩油气水力压裂的前景、挑战和发展方向","authors":"Agnes Anuka, Celestine A. Udie, G. Aquah","doi":"10.2118/207106-ms","DOIUrl":null,"url":null,"abstract":"\n Commercial accumulation of hydrocarbons occurs mostly in sedimentary rocks due to their high porosity and permeability. Increased global energy demand has necessitated the need for unconventional methods of oil production. The world is gradually moving away from reliability on conventional oils. The need to ensure global energy sustainability has necessitated an urgent diversion to unconventional oils. In recent times, hydrocarbon accumulations have been found in igneous rocks. Their low porosity and permeability however prevents commercial production as oil and gas found in these rocks will not flow. Hydraulic fracturing is useful in increasing rock porosity as it involves the breaking of rocks to allow oil and gas trapped inside to flow to producing wells. This method is useful in developing unconventional resources such as oil and gas found in igneous rocks. This research explores the prospects, challenges and way forward in the use of hydraulic fracturing to increase the porosity of igneous rock for commercial production of oil and gas.","PeriodicalId":10899,"journal":{"name":"Day 2 Tue, August 03, 2021","volume":"120 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Prospects, Challenges and Way Forward in the Use of Hydraulic Fracturing For Oil and Gas Production From Igneous Rocks\",\"authors\":\"Agnes Anuka, Celestine A. Udie, G. Aquah\",\"doi\":\"10.2118/207106-ms\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Commercial accumulation of hydrocarbons occurs mostly in sedimentary rocks due to their high porosity and permeability. Increased global energy demand has necessitated the need for unconventional methods of oil production. The world is gradually moving away from reliability on conventional oils. The need to ensure global energy sustainability has necessitated an urgent diversion to unconventional oils. In recent times, hydrocarbon accumulations have been found in igneous rocks. Their low porosity and permeability however prevents commercial production as oil and gas found in these rocks will not flow. Hydraulic fracturing is useful in increasing rock porosity as it involves the breaking of rocks to allow oil and gas trapped inside to flow to producing wells. This method is useful in developing unconventional resources such as oil and gas found in igneous rocks. This research explores the prospects, challenges and way forward in the use of hydraulic fracturing to increase the porosity of igneous rock for commercial production of oil and gas.\",\"PeriodicalId\":10899,\"journal\":{\"name\":\"Day 2 Tue, August 03, 2021\",\"volume\":\"120 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Day 2 Tue, August 03, 2021\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2118/207106-ms\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 2 Tue, August 03, 2021","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/207106-ms","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

由于沉积岩的高孔隙度和高渗透率,油气的商业聚集主要发生在沉积岩中。全球能源需求的增长使得非常规石油生产方法成为必要。世界正逐渐摆脱对传统石油的依赖。为了确保全球能源的可持续性,有必要紧急转向非常规石油。近年来,在火成岩中发现了油气聚集。然而,它们的低孔隙度和渗透率阻碍了商业生产,因为在这些岩石中发现的石油和天然气不会流动。水力压裂在增加岩石孔隙度方面是有用的,因为它涉及到岩石的破裂,使被困在岩石中的石油和天然气流向生产井。这种方法在开发火成岩中的油气等非常规资源时非常有用。本研究探讨了利用水力压裂提高火成岩孔隙度用于商业油气生产的前景、挑战和前进方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Prospects, Challenges and Way Forward in the Use of Hydraulic Fracturing For Oil and Gas Production From Igneous Rocks
Commercial accumulation of hydrocarbons occurs mostly in sedimentary rocks due to their high porosity and permeability. Increased global energy demand has necessitated the need for unconventional methods of oil production. The world is gradually moving away from reliability on conventional oils. The need to ensure global energy sustainability has necessitated an urgent diversion to unconventional oils. In recent times, hydrocarbon accumulations have been found in igneous rocks. Their low porosity and permeability however prevents commercial production as oil and gas found in these rocks will not flow. Hydraulic fracturing is useful in increasing rock porosity as it involves the breaking of rocks to allow oil and gas trapped inside to flow to producing wells. This method is useful in developing unconventional resources such as oil and gas found in igneous rocks. This research explores the prospects, challenges and way forward in the use of hydraulic fracturing to increase the porosity of igneous rock for commercial production of oil and gas.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Production and Performance Evaluation of Biodetergents as an Alternative to Conventional Drilling Detergent Comparative Evaluation of Artificial Intelligence Models for Drilling Rate of Penetration Prediction The Limitation of Reservoir Saturation Logging Tool in a Case of a Deeper Reservoir Flow into a Shallower Reservoir Within the Same Wellbore Surrogate-Based Analysis of Chemical Enhanced Oil Recovery – A Comparative Analysis of Machine Learning Model Performance Understanding the Impacts of Backpressure & Risk Analysis of Different Gas Hydrate Blockage Scenarios on the Integrity of Subsea Flowlines
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1