基于答案信息的自适应多注意网络重复问题检测

Di Liang, Fubao Zhang, Weidong Zhang, Qi Zhang, Jinlan Fu, Minlong Peng, Tao Gui, Xuanjing Huang
{"title":"基于答案信息的自适应多注意网络重复问题检测","authors":"Di Liang, Fubao Zhang, Weidong Zhang, Qi Zhang, Jinlan Fu, Minlong Peng, Tao Gui, Xuanjing Huang","doi":"10.1145/3331184.3331228","DOIUrl":null,"url":null,"abstract":"Community-based question answering (CQA), which provides a platform for people with diverse backgrounds to share information and knowledge, has become increasingly popular. With the accumulation of site data, methods to detect duplicate questions in CQA sites have attracted considerable attention. Existing methods typically use only questions to complete the task. However, the paired answers may also provide valuable information. In this paper, we propose an answer information- enhanced adaptive multi-attention network (AMAN) to perform this task. AMAN takes full advantage of the semantic information in the paired answers while alleviating the noise problem caused by adding the answers. To evaluate the proposed method, we use a CQADupStack set and the Quora question-pair dataset expanded with paired answers. Experimental results demonstrate that the proposed model can achieve state-of-the-art performance on the above two data sets.","PeriodicalId":20700,"journal":{"name":"Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":"{\"title\":\"Adaptive Multi-Attention Network Incorporating Answer Information for Duplicate Question Detection\",\"authors\":\"Di Liang, Fubao Zhang, Weidong Zhang, Qi Zhang, Jinlan Fu, Minlong Peng, Tao Gui, Xuanjing Huang\",\"doi\":\"10.1145/3331184.3331228\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Community-based question answering (CQA), which provides a platform for people with diverse backgrounds to share information and knowledge, has become increasingly popular. With the accumulation of site data, methods to detect duplicate questions in CQA sites have attracted considerable attention. Existing methods typically use only questions to complete the task. However, the paired answers may also provide valuable information. In this paper, we propose an answer information- enhanced adaptive multi-attention network (AMAN) to perform this task. AMAN takes full advantage of the semantic information in the paired answers while alleviating the noise problem caused by adding the answers. To evaluate the proposed method, we use a CQADupStack set and the Quora question-pair dataset expanded with paired answers. Experimental results demonstrate that the proposed model can achieve state-of-the-art performance on the above two data sets.\",\"PeriodicalId\":20700,\"journal\":{\"name\":\"Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"23\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3331184.3331228\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3331184.3331228","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23

摘要

基于社区的问答(CQA)为不同背景的人们提供了一个分享信息和知识的平台,已经变得越来越流行。随着站点数据的积累,CQA站点中重复问题的检测方法受到了广泛的关注。现有的方法通常只使用问题来完成任务。然而,配对的答案也可能提供有价值的信息。在本文中,我们提出了一个答案信息增强的自适应多注意网络(AMAN)来完成这个任务。AMAN充分利用了配对答案中的语义信息,同时减轻了添加答案带来的噪声问题。为了评估所提出的方法,我们使用了CQADupStack集和Quora的问题对数据集,这些数据集扩展了成对的答案。实验结果表明,所提出的模型在上述两个数据集上都能达到最先进的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Adaptive Multi-Attention Network Incorporating Answer Information for Duplicate Question Detection
Community-based question answering (CQA), which provides a platform for people with diverse backgrounds to share information and knowledge, has become increasingly popular. With the accumulation of site data, methods to detect duplicate questions in CQA sites have attracted considerable attention. Existing methods typically use only questions to complete the task. However, the paired answers may also provide valuable information. In this paper, we propose an answer information- enhanced adaptive multi-attention network (AMAN) to perform this task. AMAN takes full advantage of the semantic information in the paired answers while alleviating the noise problem caused by adding the answers. To evaluate the proposed method, we use a CQADupStack set and the Quora question-pair dataset expanded with paired answers. Experimental results demonstrate that the proposed model can achieve state-of-the-art performance on the above two data sets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Automatic Task Completion Flows from Web APIs Session details: Session 6A: Social Media Sequence and Time Aware Neighborhood for Session-based Recommendations: STAN Adversarial Training for Review-Based Recommendations Hate Speech Detection is Not as Easy as You May Think: A Closer Look at Model Validation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1