微波系统多重测量的精确蒙特卡罗不确定度分析

B. Jamroz, Dylan F. Williams, J. Rezac, M. Frey, A. Koepke
{"title":"微波系统多重测量的精确蒙特卡罗不确定度分析","authors":"B. Jamroz, Dylan F. Williams, J. Rezac, M. Frey, A. Koepke","doi":"10.1109/MWSYM.2019.8701028","DOIUrl":null,"url":null,"abstract":"Uncertainty analysis of microwave electronic measurements enables the quantification of device performance and aides in the development of robust technology. The Monte Carlo method is commonly used to attain accurate uncertainty analyses for complicated nonlinear systems. Combining multiple similar measurements, each with a Monte Carlo uncertainty analysis, allows one to incorporate the uncertainty given by their spread. In this paper, we compare two Monte Carlo sampling methods, illustrate that one method reduces the bias of averaged quantities, show how this impacts computed uncertainties, and highlight microwave applications for which this corrected method can be applied.","PeriodicalId":6720,"journal":{"name":"2019 IEEE MTT-S International Microwave Symposium (IMS)","volume":"7 1","pages":"1279-1282"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Accurate Monte Carlo Uncertainty Analysis for Multiple Measurements of Microwave Systems\",\"authors\":\"B. Jamroz, Dylan F. Williams, J. Rezac, M. Frey, A. Koepke\",\"doi\":\"10.1109/MWSYM.2019.8701028\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Uncertainty analysis of microwave electronic measurements enables the quantification of device performance and aides in the development of robust technology. The Monte Carlo method is commonly used to attain accurate uncertainty analyses for complicated nonlinear systems. Combining multiple similar measurements, each with a Monte Carlo uncertainty analysis, allows one to incorporate the uncertainty given by their spread. In this paper, we compare two Monte Carlo sampling methods, illustrate that one method reduces the bias of averaged quantities, show how this impacts computed uncertainties, and highlight microwave applications for which this corrected method can be applied.\",\"PeriodicalId\":6720,\"journal\":{\"name\":\"2019 IEEE MTT-S International Microwave Symposium (IMS)\",\"volume\":\"7 1\",\"pages\":\"1279-1282\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE MTT-S International Microwave Symposium (IMS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MWSYM.2019.8701028\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE MTT-S International Microwave Symposium (IMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MWSYM.2019.8701028","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

微波电子测量的不确定度分析使器件性能的量化成为可能,并有助于稳健技术的发展。蒙特卡罗方法通常用于对复杂非线性系统进行精确的不确定性分析。结合多个相似的测量,每个测量都使用蒙特卡罗不确定性分析,可以将它们的传播所给出的不确定性纳入其中。在本文中,我们比较了两种蒙特卡罗采样方法,说明了一种方法减少了平均量的偏差,显示了它如何影响计算的不确定性,并强调了这种修正方法可以应用于微波应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Accurate Monte Carlo Uncertainty Analysis for Multiple Measurements of Microwave Systems
Uncertainty analysis of microwave electronic measurements enables the quantification of device performance and aides in the development of robust technology. The Monte Carlo method is commonly used to attain accurate uncertainty analyses for complicated nonlinear systems. Combining multiple similar measurements, each with a Monte Carlo uncertainty analysis, allows one to incorporate the uncertainty given by their spread. In this paper, we compare two Monte Carlo sampling methods, illustrate that one method reduces the bias of averaged quantities, show how this impacts computed uncertainties, and highlight microwave applications for which this corrected method can be applied.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Leakage Phase Noise Mitigation for Monostatic FMCW Radar Sensors Using Carrier Transmission UHF Class E/F2 Outphasing Transmitter for 12 dB PAPR Signals A 2D Model of a Triple Layer Electromagnetic Heat Exchanger with Porous Media Flow Continuously-Tunable Substrate Integrated Waveguide Bandpass Filter Actuated by Liquid Metal High-Modulus Injection-Locked Frequency Divider Using Multi-Resonance Tank
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1