{"title":"雾计算范式在增材制造过程监控中的应用","authors":"Muhammad Adnan, Yan Lu, Albert T. Jones, F. Cheng","doi":"10.2139/ssrn.3785854","DOIUrl":null,"url":null,"abstract":"Monitoring and controlling Additive Manufacturing (AM) processes play a critical role in enabling the production of quality parts. AM processes generate large volumes of structured and unstructured in-situ measurement data. The ability to analyze this volume and variety of data in real-time is necessary for effective closed-loop control and decision-making. Existing control architectures are unable to handle this level of data volume and speed. This paper investigates the functional and computational requirements for real-time closed-loop AM process control. The paper uses those requirements to propose a function architecture for AM process monitoring and control. That architecture leads to a fog-computing solution to address the big data and real-time control challenges.","PeriodicalId":18255,"journal":{"name":"MatSciRN: Process & Device Modeling (Topic)","volume":"237 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Application of the Fog Computing Paradigm to Additive Manufacturing Process Monitoring and Control\",\"authors\":\"Muhammad Adnan, Yan Lu, Albert T. Jones, F. Cheng\",\"doi\":\"10.2139/ssrn.3785854\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Monitoring and controlling Additive Manufacturing (AM) processes play a critical role in enabling the production of quality parts. AM processes generate large volumes of structured and unstructured in-situ measurement data. The ability to analyze this volume and variety of data in real-time is necessary for effective closed-loop control and decision-making. Existing control architectures are unable to handle this level of data volume and speed. This paper investigates the functional and computational requirements for real-time closed-loop AM process control. The paper uses those requirements to propose a function architecture for AM process monitoring and control. That architecture leads to a fog-computing solution to address the big data and real-time control challenges.\",\"PeriodicalId\":18255,\"journal\":{\"name\":\"MatSciRN: Process & Device Modeling (Topic)\",\"volume\":\"237 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-02-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"MatSciRN: Process & Device Modeling (Topic)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3785854\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"MatSciRN: Process & Device Modeling (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3785854","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Application of the Fog Computing Paradigm to Additive Manufacturing Process Monitoring and Control
Monitoring and controlling Additive Manufacturing (AM) processes play a critical role in enabling the production of quality parts. AM processes generate large volumes of structured and unstructured in-situ measurement data. The ability to analyze this volume and variety of data in real-time is necessary for effective closed-loop control and decision-making. Existing control architectures are unable to handle this level of data volume and speed. This paper investigates the functional and computational requirements for real-time closed-loop AM process control. The paper uses those requirements to propose a function architecture for AM process monitoring and control. That architecture leads to a fog-computing solution to address the big data and real-time control challenges.