基于多特征融合的问答系统句子相似度研究

Haipeng Ruan, Yuan Li, Qinling Wang, Yu Liu
{"title":"基于多特征融合的问答系统句子相似度研究","authors":"Haipeng Ruan, Yuan Li, Qinling Wang, Yu Liu","doi":"10.1109/WI.2016.0085","DOIUrl":null,"url":null,"abstract":"If just consider one feature of sentences to calculate sentences similarity, the performance of system is difficult to reach a satisfactory level. This paper presents a method of combining the features of semantic and structural to compute sentences similarity. It first discusses the methods of calculating the semantic similarity of sentences through word embedding and Tongyici Cilin. Next, it discusses the methods of calculating the morphological similarity and order similarity of sentences, and then combines the features through the neutral network to calculate the total similarity of the sentences. We include results from an evaluation of the system's performance and show that a combination of the features works better than any single approach.","PeriodicalId":6513,"journal":{"name":"2016 IEEE/WIC/ACM International Conference on Web Intelligence (WI)","volume":"64 1","pages":"507-510"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"A Research on Sentence Similarity for Question Answering System Based on Multi-feature Fusion\",\"authors\":\"Haipeng Ruan, Yuan Li, Qinling Wang, Yu Liu\",\"doi\":\"10.1109/WI.2016.0085\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"If just consider one feature of sentences to calculate sentences similarity, the performance of system is difficult to reach a satisfactory level. This paper presents a method of combining the features of semantic and structural to compute sentences similarity. It first discusses the methods of calculating the semantic similarity of sentences through word embedding and Tongyici Cilin. Next, it discusses the methods of calculating the morphological similarity and order similarity of sentences, and then combines the features through the neutral network to calculate the total similarity of the sentences. We include results from an evaluation of the system's performance and show that a combination of the features works better than any single approach.\",\"PeriodicalId\":6513,\"journal\":{\"name\":\"2016 IEEE/WIC/ACM International Conference on Web Intelligence (WI)\",\"volume\":\"64 1\",\"pages\":\"507-510\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE/WIC/ACM International Conference on Web Intelligence (WI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WI.2016.0085\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE/WIC/ACM International Conference on Web Intelligence (WI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WI.2016.0085","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

如果只考虑句子的一个特征来计算句子的相似度,系统的性能很难达到令人满意的水平。本文提出了一种结合语义特征和结构特征计算句子相似度的方法。首先讨论了通过词嵌入和同义词林计算句子语义相似度的方法。其次,讨论了句子的形态相似度和顺序相似度的计算方法,然后通过神经网络将特征结合起来计算句子的总相似度。我们包括了对系统性能的评估结果,并表明组合这些特征比任何单一方法都更好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Research on Sentence Similarity for Question Answering System Based on Multi-feature Fusion
If just consider one feature of sentences to calculate sentences similarity, the performance of system is difficult to reach a satisfactory level. This paper presents a method of combining the features of semantic and structural to compute sentences similarity. It first discusses the methods of calculating the semantic similarity of sentences through word embedding and Tongyici Cilin. Next, it discusses the methods of calculating the morphological similarity and order similarity of sentences, and then combines the features through the neutral network to calculate the total similarity of the sentences. We include results from an evaluation of the system's performance and show that a combination of the features works better than any single approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The Political Power of Twitter IEEE/WIC/ACM International Conference on Web Intelligence A Distributed Approach to Constructing Travel Solutions by Exploiting Web Resources Joint Model of Topics, Expertises, Activities and Trends for Question Answering Web Applications A Multi-context BDI Recommender System: From Theory to Simulation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1