{"title":"基于多特征融合的问答系统句子相似度研究","authors":"Haipeng Ruan, Yuan Li, Qinling Wang, Yu Liu","doi":"10.1109/WI.2016.0085","DOIUrl":null,"url":null,"abstract":"If just consider one feature of sentences to calculate sentences similarity, the performance of system is difficult to reach a satisfactory level. This paper presents a method of combining the features of semantic and structural to compute sentences similarity. It first discusses the methods of calculating the semantic similarity of sentences through word embedding and Tongyici Cilin. Next, it discusses the methods of calculating the morphological similarity and order similarity of sentences, and then combines the features through the neutral network to calculate the total similarity of the sentences. We include results from an evaluation of the system's performance and show that a combination of the features works better than any single approach.","PeriodicalId":6513,"journal":{"name":"2016 IEEE/WIC/ACM International Conference on Web Intelligence (WI)","volume":"64 1","pages":"507-510"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"A Research on Sentence Similarity for Question Answering System Based on Multi-feature Fusion\",\"authors\":\"Haipeng Ruan, Yuan Li, Qinling Wang, Yu Liu\",\"doi\":\"10.1109/WI.2016.0085\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"If just consider one feature of sentences to calculate sentences similarity, the performance of system is difficult to reach a satisfactory level. This paper presents a method of combining the features of semantic and structural to compute sentences similarity. It first discusses the methods of calculating the semantic similarity of sentences through word embedding and Tongyici Cilin. Next, it discusses the methods of calculating the morphological similarity and order similarity of sentences, and then combines the features through the neutral network to calculate the total similarity of the sentences. We include results from an evaluation of the system's performance and show that a combination of the features works better than any single approach.\",\"PeriodicalId\":6513,\"journal\":{\"name\":\"2016 IEEE/WIC/ACM International Conference on Web Intelligence (WI)\",\"volume\":\"64 1\",\"pages\":\"507-510\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE/WIC/ACM International Conference on Web Intelligence (WI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WI.2016.0085\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE/WIC/ACM International Conference on Web Intelligence (WI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WI.2016.0085","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Research on Sentence Similarity for Question Answering System Based on Multi-feature Fusion
If just consider one feature of sentences to calculate sentences similarity, the performance of system is difficult to reach a satisfactory level. This paper presents a method of combining the features of semantic and structural to compute sentences similarity. It first discusses the methods of calculating the semantic similarity of sentences through word embedding and Tongyici Cilin. Next, it discusses the methods of calculating the morphological similarity and order similarity of sentences, and then combines the features through the neutral network to calculate the total similarity of the sentences. We include results from an evaluation of the system's performance and show that a combination of the features works better than any single approach.