{"title":"约简对策,可证明性和紧凑性","authors":"D. Dzhafarov, D. Hirschfeldt, Sarah C. Reitzes","doi":"10.1142/s021906132250009x","DOIUrl":null,"url":null,"abstract":"Hirschfeldt and Jockusch (2016) introduced a two-player game in which winning strategies for one or the other player precisely correspond to implications and non-implications between [Formula: see text] principles over [Formula: see text]-models of [Formula: see text]. They also introduced a version of this game that similarly captures provability over [Formula: see text]. We generalize and extend this game-theoretic framework to other formal systems, and establish a certain compactness result that shows that if an implication [Formula: see text] between two principles holds, then there exists a winning strategy that achieves victory in a number of moves bounded by a number independent of the specific run of the game. This compactness result generalizes an old proof-theoretic fact noted by H. Wang (1981), and has applications to the reverse mathematics of combinatorial principles. We also demonstrate how this framework leads to a new kind of analysis of the logical strength of mathematical problems that refines both that of reverse mathematics and that of computability-theoretic notions such as Weihrauch reducibility, allowing for a kind of fine-structural comparison between [Formula: see text] principles that has both computability-theoretic and proof-theoretic aspects, and can help us distinguish between these, for example by showing that a certain use of a principle in a proof is “purely proof-theoretic”, as opposed to relying on its computability-theoretic strength. We give examples of this analysis to a number of principles at the level of [Formula: see text], uncovering new differences between their logical strengths.","PeriodicalId":50144,"journal":{"name":"Journal of Mathematical Logic","volume":"2 1","pages":"2250009:1-2250009:37"},"PeriodicalIF":0.9000,"publicationDate":"2020-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Reduction games, provability and compactness\",\"authors\":\"D. Dzhafarov, D. Hirschfeldt, Sarah C. Reitzes\",\"doi\":\"10.1142/s021906132250009x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Hirschfeldt and Jockusch (2016) introduced a two-player game in which winning strategies for one or the other player precisely correspond to implications and non-implications between [Formula: see text] principles over [Formula: see text]-models of [Formula: see text]. They also introduced a version of this game that similarly captures provability over [Formula: see text]. We generalize and extend this game-theoretic framework to other formal systems, and establish a certain compactness result that shows that if an implication [Formula: see text] between two principles holds, then there exists a winning strategy that achieves victory in a number of moves bounded by a number independent of the specific run of the game. This compactness result generalizes an old proof-theoretic fact noted by H. Wang (1981), and has applications to the reverse mathematics of combinatorial principles. We also demonstrate how this framework leads to a new kind of analysis of the logical strength of mathematical problems that refines both that of reverse mathematics and that of computability-theoretic notions such as Weihrauch reducibility, allowing for a kind of fine-structural comparison between [Formula: see text] principles that has both computability-theoretic and proof-theoretic aspects, and can help us distinguish between these, for example by showing that a certain use of a principle in a proof is “purely proof-theoretic”, as opposed to relying on its computability-theoretic strength. We give examples of this analysis to a number of principles at the level of [Formula: see text], uncovering new differences between their logical strengths.\",\"PeriodicalId\":50144,\"journal\":{\"name\":\"Journal of Mathematical Logic\",\"volume\":\"2 1\",\"pages\":\"2250009:1-2250009:37\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2020-08-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Logic\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/s021906132250009x\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"LOGIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Logic","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s021906132250009x","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"LOGIC","Score":null,"Total":0}
Hirschfeldt and Jockusch (2016) introduced a two-player game in which winning strategies for one or the other player precisely correspond to implications and non-implications between [Formula: see text] principles over [Formula: see text]-models of [Formula: see text]. They also introduced a version of this game that similarly captures provability over [Formula: see text]. We generalize and extend this game-theoretic framework to other formal systems, and establish a certain compactness result that shows that if an implication [Formula: see text] between two principles holds, then there exists a winning strategy that achieves victory in a number of moves bounded by a number independent of the specific run of the game. This compactness result generalizes an old proof-theoretic fact noted by H. Wang (1981), and has applications to the reverse mathematics of combinatorial principles. We also demonstrate how this framework leads to a new kind of analysis of the logical strength of mathematical problems that refines both that of reverse mathematics and that of computability-theoretic notions such as Weihrauch reducibility, allowing for a kind of fine-structural comparison between [Formula: see text] principles that has both computability-theoretic and proof-theoretic aspects, and can help us distinguish between these, for example by showing that a certain use of a principle in a proof is “purely proof-theoretic”, as opposed to relying on its computability-theoretic strength. We give examples of this analysis to a number of principles at the level of [Formula: see text], uncovering new differences between their logical strengths.
期刊介绍:
The Journal of Mathematical Logic (JML) provides an important forum for the communication of original contributions in all areas of mathematical logic and its applications. It aims at publishing papers at the highest level of mathematical creativity and sophistication. JML intends to represent the most important and innovative developments in the subject.