配电网中太阳能光伏发电优化集成和概率负荷模型的可能性不确定性评估

IF 0.6 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC Facta Universitatis-Series Electronics and Energetics Pub Date : 2022-01-01 DOI:10.2298/fuee2201071p
S. Parihar, Nitin Malik
{"title":"配电网中太阳能光伏发电优化集成和概率负荷模型的可能性不确定性评估","authors":"S. Parihar, Nitin Malik","doi":"10.2298/fuee2201071p","DOIUrl":null,"url":null,"abstract":"To integrate network load and line uncertainties in the radial distribution network (RDN), the probabilistic and possibilistic method has been applied. The load uncertainty is considered to vary as Gaussian distribution function whereas line uncertainty is varied at a fixed proportion. A voltage stability index is proposed to assign solar PV-DG optimally followed by application of PSO technique to determine the optimal power rating of DG. Standard IEEE 33- and 69-bus RDN are considered for the analysis. The impact of various uncertainties in the presence of optimally integrated solar PV-DG has been carried out on 69-bus network. The results obtained are superior to fuzzy-arithmetic algorithm. Faster convergence characteristic is obtained and analyzed at different degree of belongingness and realistic load models. The narrower interval width indicates that the observed results are numerically stable. To improve network performance, the technique takes into account long-term changes in the load profile during the planning stage. The significant drop in network power losses, upgraded bus voltage profile and noteworthy energy loss savings are observed due to the introduction of renewable DG. The results are also statistically verified.","PeriodicalId":44296,"journal":{"name":"Facta Universitatis-Series Electronics and Energetics","volume":"38 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Possibilistic uncertainty assessment in the presence of optimally integrated solar PV-DG and probabilistic load model in distribution network\",\"authors\":\"S. Parihar, Nitin Malik\",\"doi\":\"10.2298/fuee2201071p\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To integrate network load and line uncertainties in the radial distribution network (RDN), the probabilistic and possibilistic method has been applied. The load uncertainty is considered to vary as Gaussian distribution function whereas line uncertainty is varied at a fixed proportion. A voltage stability index is proposed to assign solar PV-DG optimally followed by application of PSO technique to determine the optimal power rating of DG. Standard IEEE 33- and 69-bus RDN are considered for the analysis. The impact of various uncertainties in the presence of optimally integrated solar PV-DG has been carried out on 69-bus network. The results obtained are superior to fuzzy-arithmetic algorithm. Faster convergence characteristic is obtained and analyzed at different degree of belongingness and realistic load models. The narrower interval width indicates that the observed results are numerically stable. To improve network performance, the technique takes into account long-term changes in the load profile during the planning stage. The significant drop in network power losses, upgraded bus voltage profile and noteworthy energy loss savings are observed due to the introduction of renewable DG. The results are also statistically verified.\",\"PeriodicalId\":44296,\"journal\":{\"name\":\"Facta Universitatis-Series Electronics and Energetics\",\"volume\":\"38 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Facta Universitatis-Series Electronics and Energetics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2298/fuee2201071p\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Facta Universitatis-Series Electronics and Energetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2298/fuee2201071p","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

为了综合考虑径向配电网的负荷和线路的不确定性,采用了概率和可能性方法。负荷不确定性按高斯分布函数变化,而线路不确定性按固定比例变化。提出了一个电压稳定指标来优化分配太阳能光伏-DG,并应用粒子群算法确定DG的最优额定功率。标准IEEE 33总线和69总线RDN被考虑用于分析。在69母线网络上进行了优化集成太阳能PV-DG存在的各种不确定性的影响。所得结果优于模糊算法。得到了更快的收敛特性,并分析了不同隶属度和现实负荷模型下的收敛特性。较窄的区间宽度表明观测结果在数值上是稳定的。为了提高网络性能,该技术在规划阶段考虑了负载概况的长期变化。由于引入了可再生DG,网络功率损耗显著下降,母线电压曲线升级,能源损耗显著减少。结果也得到了统计验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Possibilistic uncertainty assessment in the presence of optimally integrated solar PV-DG and probabilistic load model in distribution network
To integrate network load and line uncertainties in the radial distribution network (RDN), the probabilistic and possibilistic method has been applied. The load uncertainty is considered to vary as Gaussian distribution function whereas line uncertainty is varied at a fixed proportion. A voltage stability index is proposed to assign solar PV-DG optimally followed by application of PSO technique to determine the optimal power rating of DG. Standard IEEE 33- and 69-bus RDN are considered for the analysis. The impact of various uncertainties in the presence of optimally integrated solar PV-DG has been carried out on 69-bus network. The results obtained are superior to fuzzy-arithmetic algorithm. Faster convergence characteristic is obtained and analyzed at different degree of belongingness and realistic load models. The narrower interval width indicates that the observed results are numerically stable. To improve network performance, the technique takes into account long-term changes in the load profile during the planning stage. The significant drop in network power losses, upgraded bus voltage profile and noteworthy energy loss savings are observed due to the introduction of renewable DG. The results are also statistically verified.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Facta Universitatis-Series Electronics and Energetics
Facta Universitatis-Series Electronics and Energetics ENGINEERING, ELECTRICAL & ELECTRONIC-
自引率
16.70%
发文量
10
审稿时长
20 weeks
期刊最新文献
Machine learning assisted optimization and its application to hybrid dielectric resonator antenna design Performance of wearable circularly polarized antenna on different high frequency substrates for dual-band wireless applications Dual band MIMO antenna for LTE, 4G and sub-6 GHz 5G applications Discrete time quasi-sliding mode-based control of LCL grid inverters Performance analysis of FinFET based inverter, NAND and NOR circuits at 10 NM,7 NM and 5 NM node technologies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1