Plínio MS Ramos, J. Macedo, Caio BS Maior, M. Moura, I. Lins
{"title":"结合BERT和数值变量对基于事故描述的工伤假进行分类","authors":"Plínio MS Ramos, J. Macedo, Caio BS Maior, M. Moura, I. Lins","doi":"10.1177/1748006x221140194","DOIUrl":null,"url":null,"abstract":"The occurrence of work accidents may threaten the workers’ health and lead to consequences for the organizations as well, such as restructuring of work and direct/indirect costs with the absence of the worker. In this context, accident investigation reports contain information that can support companies to propose preventive and mitigative measures and identify causes and consequences of injury events. However, this information is frequently complex, redundant, and/or incomplete. Additionally, a complete human review of the entire database is arduous, considering numerous reports produced by a company. Indeed, Natural Language Processing (NLP)-based techniques are suitable for analyzing a massive amount of textual information. In this paper, we adopted NLP techniques to determine whether an injury leave would be expected from a given accident report. The methodology was applied to accident reports collected from an actual hydroelectric power company using Bidirectional Encoder Representations from Transformers (BERT), a state-of-art NLP method. The text representations provided by BERT model were combined with numerical and binary variables extracted from the accident reports. These combined variables are input to a Multilayer Perceptron (MLP) that predicts the occurrence of the accident leave for a given accident. After cross-validation, the results showed a median accuracy of 73.5%. Additionally, we discuss several reports that presented high and low proportions of correct classifications by the models tested and discussed the possible reasons. Indeed, accident investigation reports provide useful knowledge to support decisions in the safety context.","PeriodicalId":51266,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers Part O-Journal of Risk and Reliability","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2022-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Combining BERT with numerical variables to classify injury leave based on accident description\",\"authors\":\"Plínio MS Ramos, J. Macedo, Caio BS Maior, M. Moura, I. Lins\",\"doi\":\"10.1177/1748006x221140194\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The occurrence of work accidents may threaten the workers’ health and lead to consequences for the organizations as well, such as restructuring of work and direct/indirect costs with the absence of the worker. In this context, accident investigation reports contain information that can support companies to propose preventive and mitigative measures and identify causes and consequences of injury events. However, this information is frequently complex, redundant, and/or incomplete. Additionally, a complete human review of the entire database is arduous, considering numerous reports produced by a company. Indeed, Natural Language Processing (NLP)-based techniques are suitable for analyzing a massive amount of textual information. In this paper, we adopted NLP techniques to determine whether an injury leave would be expected from a given accident report. The methodology was applied to accident reports collected from an actual hydroelectric power company using Bidirectional Encoder Representations from Transformers (BERT), a state-of-art NLP method. The text representations provided by BERT model were combined with numerical and binary variables extracted from the accident reports. These combined variables are input to a Multilayer Perceptron (MLP) that predicts the occurrence of the accident leave for a given accident. After cross-validation, the results showed a median accuracy of 73.5%. Additionally, we discuss several reports that presented high and low proportions of correct classifications by the models tested and discussed the possible reasons. Indeed, accident investigation reports provide useful knowledge to support decisions in the safety context.\",\"PeriodicalId\":51266,\"journal\":{\"name\":\"Proceedings of the Institution of Mechanical Engineers Part O-Journal of Risk and Reliability\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2022-12-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Institution of Mechanical Engineers Part O-Journal of Risk and Reliability\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/1748006x221140194\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, INDUSTRIAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers Part O-Journal of Risk and Reliability","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/1748006x221140194","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
Combining BERT with numerical variables to classify injury leave based on accident description
The occurrence of work accidents may threaten the workers’ health and lead to consequences for the organizations as well, such as restructuring of work and direct/indirect costs with the absence of the worker. In this context, accident investigation reports contain information that can support companies to propose preventive and mitigative measures and identify causes and consequences of injury events. However, this information is frequently complex, redundant, and/or incomplete. Additionally, a complete human review of the entire database is arduous, considering numerous reports produced by a company. Indeed, Natural Language Processing (NLP)-based techniques are suitable for analyzing a massive amount of textual information. In this paper, we adopted NLP techniques to determine whether an injury leave would be expected from a given accident report. The methodology was applied to accident reports collected from an actual hydroelectric power company using Bidirectional Encoder Representations from Transformers (BERT), a state-of-art NLP method. The text representations provided by BERT model were combined with numerical and binary variables extracted from the accident reports. These combined variables are input to a Multilayer Perceptron (MLP) that predicts the occurrence of the accident leave for a given accident. After cross-validation, the results showed a median accuracy of 73.5%. Additionally, we discuss several reports that presented high and low proportions of correct classifications by the models tested and discussed the possible reasons. Indeed, accident investigation reports provide useful knowledge to support decisions in the safety context.
期刊介绍:
The Journal of Risk and Reliability is for researchers and practitioners who are involved in the field of risk analysis and reliability engineering. The remit of the Journal covers concepts, theories, principles, approaches, methods and models for the proper understanding, assessment, characterisation and management of the risk and reliability of engineering systems. The journal welcomes papers which are based on mathematical and probabilistic analysis, simulation and/or optimisation, as well as works highlighting conceptual and managerial issues. Papers that provide perspectives on current practices and methods, and how to improve these, are also welcome