{"title":"地理路由拓扑表征中基于分布的分组转发距离不相似学习","authors":"G. Oladeji-Atanda, Dimane Mpoeleng","doi":"10.1017/exp.2022.19","DOIUrl":null,"url":null,"abstract":"Abstract We have previously shown that the geographic routing’s greedy packet forwarding distance (PFD), in dissimilarity values of its average measures, characterizes a mobile ad hoc network’s (MANET) topology by node size. In this article, we demonstrate a distribution-based analysis of the PFD measures that were generated by two representative greedy algorithms, namely GREEDY and ELLIPSOID. The result shows the potential of the distribution-based dissimilarity learning of the PFD in topology characterizing. Characterizing dynamic MANET topology supports context-aware performance optimization in position-based or geographic packet routing.","PeriodicalId":12269,"journal":{"name":"Experimental Results","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Distribution-based packet forwarding distance dissimilarity learning for topology characterizing in geographic routing\",\"authors\":\"G. Oladeji-Atanda, Dimane Mpoeleng\",\"doi\":\"10.1017/exp.2022.19\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We have previously shown that the geographic routing’s greedy packet forwarding distance (PFD), in dissimilarity values of its average measures, characterizes a mobile ad hoc network’s (MANET) topology by node size. In this article, we demonstrate a distribution-based analysis of the PFD measures that were generated by two representative greedy algorithms, namely GREEDY and ELLIPSOID. The result shows the potential of the distribution-based dissimilarity learning of the PFD in topology characterizing. Characterizing dynamic MANET topology supports context-aware performance optimization in position-based or geographic packet routing.\",\"PeriodicalId\":12269,\"journal\":{\"name\":\"Experimental Results\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Experimental Results\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1017/exp.2022.19\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental Results","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/exp.2022.19","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Distribution-based packet forwarding distance dissimilarity learning for topology characterizing in geographic routing
Abstract We have previously shown that the geographic routing’s greedy packet forwarding distance (PFD), in dissimilarity values of its average measures, characterizes a mobile ad hoc network’s (MANET) topology by node size. In this article, we demonstrate a distribution-based analysis of the PFD measures that were generated by two representative greedy algorithms, namely GREEDY and ELLIPSOID. The result shows the potential of the distribution-based dissimilarity learning of the PFD in topology characterizing. Characterizing dynamic MANET topology supports context-aware performance optimization in position-based or geographic packet routing.