基于规则的专家系统开发母猪精密饲养系统

IF 2.2 2区 农林科学 Q2 AGRICULTURAL ENGINEERING International Journal of Agricultural and Biological Engineering Pub Date : 2023-01-01 DOI:10.25165/j.ijabe.20231602.7427
Chong Chen, Xingqiao Liu, Chao Liu, Qin Pan
{"title":"基于规则的专家系统开发母猪精密饲养系统","authors":"Chong Chen, Xingqiao Liu, Chao Liu, Qin Pan","doi":"10.25165/j.ijabe.20231602.7427","DOIUrl":null,"url":null,"abstract":": To precisely meet the nutritional requirements of sows during the stages of pregnancy and lactation, a precision feeding system was developed by using the intelligent sow feeder combined with a rule-based expert system and the Internet of Things (IoTs). The model of uncertain knowledge representation was established for inference by using the certainty factor. The daily feeding amount of each sow was calculated by the expert system. An improved pattern matching algorithm Reused Degree Model-RETE (RDM-RETE) was proposed for the decision of daily feeding amount, which sped up inference by optimizing the RETE network topology. A prediction model of daily feeding amount was established by a rule-based expert system and the precision feeding was achieved by an accurate control technology of variable volume. The experimental results demonstrated that the HASH-RDM-RETE algorithm could effectively reduce the network complexity and improve the inference efficiency. The feeding amount decided by the expert system was a logarithmic model, which was consistent with the feeding law of lactating sows. The inferential feeding amount was adopted as the predicted feed intake and the coefficient of correlation between predicted feed intake and actual feed intake was greater than or equal to 0.99. Each sow was fed at different feeding intervals and different feed amounts for each meal in a day. The feed intake was 26.84% higher than that of artificial feeding during lactation days ( p <0.05). The piglets weaned per sow per year (PSY) can be increased by 1.51 compared with that of relatively high levels in domestic pig farms. This system is stable in feeding and lowers the breeding cost that can be applied in precision feeding in swine production.","PeriodicalId":13895,"journal":{"name":"International Journal of Agricultural and Biological Engineering","volume":"7 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Development of the precision feeding system for sows via a rule-based expert system\",\"authors\":\"Chong Chen, Xingqiao Liu, Chao Liu, Qin Pan\",\"doi\":\"10.25165/j.ijabe.20231602.7427\",\"DOIUrl\":null,\"url\":null,\"abstract\":\": To precisely meet the nutritional requirements of sows during the stages of pregnancy and lactation, a precision feeding system was developed by using the intelligent sow feeder combined with a rule-based expert system and the Internet of Things (IoTs). The model of uncertain knowledge representation was established for inference by using the certainty factor. The daily feeding amount of each sow was calculated by the expert system. An improved pattern matching algorithm Reused Degree Model-RETE (RDM-RETE) was proposed for the decision of daily feeding amount, which sped up inference by optimizing the RETE network topology. A prediction model of daily feeding amount was established by a rule-based expert system and the precision feeding was achieved by an accurate control technology of variable volume. The experimental results demonstrated that the HASH-RDM-RETE algorithm could effectively reduce the network complexity and improve the inference efficiency. The feeding amount decided by the expert system was a logarithmic model, which was consistent with the feeding law of lactating sows. The inferential feeding amount was adopted as the predicted feed intake and the coefficient of correlation between predicted feed intake and actual feed intake was greater than or equal to 0.99. Each sow was fed at different feeding intervals and different feed amounts for each meal in a day. The feed intake was 26.84% higher than that of artificial feeding during lactation days ( p <0.05). The piglets weaned per sow per year (PSY) can be increased by 1.51 compared with that of relatively high levels in domestic pig farms. This system is stable in feeding and lowers the breeding cost that can be applied in precision feeding in swine production.\",\"PeriodicalId\":13895,\"journal\":{\"name\":\"International Journal of Agricultural and Biological Engineering\",\"volume\":\"7 1\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Agricultural and Biological Engineering\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.25165/j.ijabe.20231602.7427\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AGRICULTURAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Agricultural and Biological Engineering","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.25165/j.ijabe.20231602.7427","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AGRICULTURAL ENGINEERING","Score":null,"Total":0}
引用次数: 1

摘要

:为精确满足母猪孕期和哺乳期的营养需求,将智能母猪喂料机与基于规则的专家系统和物联网相结合,开发了一套精确喂料系统。利用确定性因素建立不确定知识表示模型,进行推理。利用专家系统计算每头母猪的日采食量。提出了一种改进的可重用度模型-RETE (RDM-RETE)模式匹配算法,通过优化RETE网络拓扑结构,提高了推理速度。采用基于规则的专家系统建立了日进料量预测模型,采用变体积精确控制技术实现了精确进料。实验结果表明,HASH-RDM-RETE算法可以有效降低网络复杂度,提高推理效率。专家系统确定的投喂量为对数模型,符合泌乳母猪的饲喂规律。预测采食量采用推理采食量,预测采食量与实际采食量的相关系数大于等于0.99。每头母猪按不同的饲喂间隔和一日每顿不同的投料量饲喂。泌乳日采食量比人工饲养高26.84% (p <0.05)。与国内较高水平的猪场相比,每头母猪年断奶仔猪数(PSY)可提高1.51头。该系统饲喂稳定,降低了养殖成本,可应用于养猪生产中的精准饲养。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Development of the precision feeding system for sows via a rule-based expert system
: To precisely meet the nutritional requirements of sows during the stages of pregnancy and lactation, a precision feeding system was developed by using the intelligent sow feeder combined with a rule-based expert system and the Internet of Things (IoTs). The model of uncertain knowledge representation was established for inference by using the certainty factor. The daily feeding amount of each sow was calculated by the expert system. An improved pattern matching algorithm Reused Degree Model-RETE (RDM-RETE) was proposed for the decision of daily feeding amount, which sped up inference by optimizing the RETE network topology. A prediction model of daily feeding amount was established by a rule-based expert system and the precision feeding was achieved by an accurate control technology of variable volume. The experimental results demonstrated that the HASH-RDM-RETE algorithm could effectively reduce the network complexity and improve the inference efficiency. The feeding amount decided by the expert system was a logarithmic model, which was consistent with the feeding law of lactating sows. The inferential feeding amount was adopted as the predicted feed intake and the coefficient of correlation between predicted feed intake and actual feed intake was greater than or equal to 0.99. Each sow was fed at different feeding intervals and different feed amounts for each meal in a day. The feed intake was 26.84% higher than that of artificial feeding during lactation days ( p <0.05). The piglets weaned per sow per year (PSY) can be increased by 1.51 compared with that of relatively high levels in domestic pig farms. This system is stable in feeding and lowers the breeding cost that can be applied in precision feeding in swine production.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.30
自引率
12.50%
发文量
88
审稿时长
24 weeks
期刊介绍: International Journal of Agricultural and Biological Engineering (IJABE, https://www.ijabe.org) is a peer reviewed open access international journal. IJABE, started in 2008, is a joint publication co-sponsored by US-based Association of Agricultural, Biological and Food Engineers (AOCABFE) and China-based Chinese Society of Agricultural Engineering (CSAE). The ISSN 1934-6344 and eISSN 1934-6352 numbers for both print and online IJABE have been registered in US. Now, Int. J. Agric. & Biol. Eng (IJABE) is published in both online and print version by Chinese Academy of Agricultural Engineering.
期刊最新文献
Effects of spray adjuvants and operation modes on droplet deposition and elm aphid control using an unmanned aerial vehicle Comprehensive evaluation of the optimal rates of irrigation and potassium application for strawberry Design and test of the bilateral throwing soil-covering device for straw mulching machine in orchards Detection of the foreign object positions in agricultural soils using Mask-RCNN Separation and mechanical properties of residual film and soil
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1