推断大规模网络中的未来链接

Sima Das, Sajal K. Das, Susmita K. Ghosh
{"title":"推断大规模网络中的未来链接","authors":"Sima Das, Sajal K. Das, Susmita K. Ghosh","doi":"10.1109/LCN.2016.52","DOIUrl":null,"url":null,"abstract":"The challenge in predicting future links over large scale networks (social networks) is not only maintaining accuracy, but also coping with the time-varying network graph. In contrast to the existing approaches, in this work we propose building a Markov prediction model. It not only incorporates temporal snapshots reflecting the dynamic network graph, but also considers effect of multiple timescales, along with corresponding local and global structural evolution (links and clusters respectively), correlated evolution and rate of evolution. The resulting edge selection in our approach exhibits the power law degree distribution, as exhibited in real world networks. Finally, we use two heavily dynamic real world network temporal data set (e.g. Twitter and Enron) and one relatively less dynamic network data set (e.g. DBLP), and existing state-of-the-art static and recent dynamic measures, to evaluate the prediction accuracy of our proposed Markov model and show that it out performs existing approaches.","PeriodicalId":6864,"journal":{"name":"2016 IEEE 41st Conference on Local Computer Networks (LCN)","volume":"41 1","pages":"244-252"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Inferring Future Links in Large Scale Networks\",\"authors\":\"Sima Das, Sajal K. Das, Susmita K. Ghosh\",\"doi\":\"10.1109/LCN.2016.52\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The challenge in predicting future links over large scale networks (social networks) is not only maintaining accuracy, but also coping with the time-varying network graph. In contrast to the existing approaches, in this work we propose building a Markov prediction model. It not only incorporates temporal snapshots reflecting the dynamic network graph, but also considers effect of multiple timescales, along with corresponding local and global structural evolution (links and clusters respectively), correlated evolution and rate of evolution. The resulting edge selection in our approach exhibits the power law degree distribution, as exhibited in real world networks. Finally, we use two heavily dynamic real world network temporal data set (e.g. Twitter and Enron) and one relatively less dynamic network data set (e.g. DBLP), and existing state-of-the-art static and recent dynamic measures, to evaluate the prediction accuracy of our proposed Markov model and show that it out performs existing approaches.\",\"PeriodicalId\":6864,\"journal\":{\"name\":\"2016 IEEE 41st Conference on Local Computer Networks (LCN)\",\"volume\":\"41 1\",\"pages\":\"244-252\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE 41st Conference on Local Computer Networks (LCN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/LCN.2016.52\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 41st Conference on Local Computer Networks (LCN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LCN.2016.52","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在大规模网络(社会网络)中预测未来链接的挑战不仅在于保持准确性,而且在于处理时变的网络图。与现有的方法相比,在这项工作中,我们提出建立一个马尔可夫预测模型。它不仅结合了反映动态网络图的时间快照,而且考虑了多个时间尺度的影响,以及相应的局部和全局结构演化(分别为链接和集群)、相关演化和演化速度。在我们的方法中产生的边缘选择显示了幂律度分布,正如在现实世界的网络中所显示的那样。最后,我们使用两个高度动态的现实世界网络时态数据集(例如Twitter和安然)和一个相对不那么动态的网络数据集(例如DBLP),以及现有的最先进的静态和最新的动态测量,来评估我们提出的马尔可夫模型的预测准确性,并表明它优于现有的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Inferring Future Links in Large Scale Networks
The challenge in predicting future links over large scale networks (social networks) is not only maintaining accuracy, but also coping with the time-varying network graph. In contrast to the existing approaches, in this work we propose building a Markov prediction model. It not only incorporates temporal snapshots reflecting the dynamic network graph, but also considers effect of multiple timescales, along with corresponding local and global structural evolution (links and clusters respectively), correlated evolution and rate of evolution. The resulting edge selection in our approach exhibits the power law degree distribution, as exhibited in real world networks. Finally, we use two heavily dynamic real world network temporal data set (e.g. Twitter and Enron) and one relatively less dynamic network data set (e.g. DBLP), and existing state-of-the-art static and recent dynamic measures, to evaluate the prediction accuracy of our proposed Markov model and show that it out performs existing approaches.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Message from the General Chair Message from the general chair Best of Both Worlds: Prioritizing Network Coding without Increased Space Complexity Controlling Network Latency in Mixed Hadoop Clusters: Do We Need Active Queue Management? TransFetch: A Viewing Behavior Driven Video Distribution Framework in Public Transport
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1