基于机器学习的开源许可证异常检测

Christopher Vendome, M. Vásquez, G. Bavota, M. D. Penta, D. Germán, D. Poshyvanyk
{"title":"基于机器学习的开源许可证异常检测","authors":"Christopher Vendome, M. Vásquez, G. Bavota, M. D. Penta, D. Germán, D. Poshyvanyk","doi":"10.1109/ICSE.2017.19","DOIUrl":null,"url":null,"abstract":"From a legal perspective, software licenses govern the redistribution, reuse, and modification of software as both source and binary code. Free and Open Source Software (FOSS) licenses vary in the degree to which they are permissive or restrictive in allowing redistribution or modification under licenses different from the original one(s). In certain cases, developers may modify the license by appending to it an exception to specifically allow reuse or modification under a particular condition. These exceptions are an important factor to consider for license compliance analysis since they modify the standard (and widely understood) terms of the original license. In this work, we first perform a large-scale empirical study on the change history of over 51K FOSS systems aimed at quantitatively investigating the prevalence of known license exceptions and identifying new ones. Subsequently, we performed a study on the detection of license exceptions by relying on machine learning. We evaluated the license exception classification with four different supervised learners and sensitivity analysis. Finally, we present a categorization of license exceptions and explain their implications.","PeriodicalId":6505,"journal":{"name":"2017 IEEE/ACM 39th International Conference on Software Engineering (ICSE)","volume":"136 1","pages":"118-129"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"28","resultStr":"{\"title\":\"Machine Learning-Based Detection of Open Source License Exceptions\",\"authors\":\"Christopher Vendome, M. Vásquez, G. Bavota, M. D. Penta, D. Germán, D. Poshyvanyk\",\"doi\":\"10.1109/ICSE.2017.19\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"From a legal perspective, software licenses govern the redistribution, reuse, and modification of software as both source and binary code. Free and Open Source Software (FOSS) licenses vary in the degree to which they are permissive or restrictive in allowing redistribution or modification under licenses different from the original one(s). In certain cases, developers may modify the license by appending to it an exception to specifically allow reuse or modification under a particular condition. These exceptions are an important factor to consider for license compliance analysis since they modify the standard (and widely understood) terms of the original license. In this work, we first perform a large-scale empirical study on the change history of over 51K FOSS systems aimed at quantitatively investigating the prevalence of known license exceptions and identifying new ones. Subsequently, we performed a study on the detection of license exceptions by relying on machine learning. We evaluated the license exception classification with four different supervised learners and sensitivity analysis. Finally, we present a categorization of license exceptions and explain their implications.\",\"PeriodicalId\":6505,\"journal\":{\"name\":\"2017 IEEE/ACM 39th International Conference on Software Engineering (ICSE)\",\"volume\":\"136 1\",\"pages\":\"118-129\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"28\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE/ACM 39th International Conference on Software Engineering (ICSE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSE.2017.19\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE/ACM 39th International Conference on Software Engineering (ICSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSE.2017.19","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 28

摘要

从法律的角度来看,软件许可证管理软件作为源代码和二进制代码的再分发、重用和修改。自由和开放源码软件(FOSS)许可证在允许在不同于原始许可证下进行再分发或修改的程度上是允许的还是限制的。在某些情况下,开发人员可以通过附加例外来修改许可证,以明确允许在特定条件下重用或修改。这些例外是进行许可遵从性分析时要考虑的一个重要因素,因为它们修改了原始许可的标准(并且被广泛理解)条款。在这项工作中,我们首先对超过51K个自由/开源软件系统的变化历史进行了大规模的实证研究,旨在定量调查已知许可例外的流行程度并识别新的许可例外。随后,我们通过机器学习对许可证异常的检测进行了研究。我们用四种不同的监督学习器和敏感性分析来评估许可证例外分类。最后,我们给出了许可例外的分类并解释了它们的含义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Machine Learning-Based Detection of Open Source License Exceptions
From a legal perspective, software licenses govern the redistribution, reuse, and modification of software as both source and binary code. Free and Open Source Software (FOSS) licenses vary in the degree to which they are permissive or restrictive in allowing redistribution or modification under licenses different from the original one(s). In certain cases, developers may modify the license by appending to it an exception to specifically allow reuse or modification under a particular condition. These exceptions are an important factor to consider for license compliance analysis since they modify the standard (and widely understood) terms of the original license. In this work, we first perform a large-scale empirical study on the change history of over 51K FOSS systems aimed at quantitatively investigating the prevalence of known license exceptions and identifying new ones. Subsequently, we performed a study on the detection of license exceptions by relying on machine learning. We evaluated the license exception classification with four different supervised learners and sensitivity analysis. Finally, we present a categorization of license exceptions and explain their implications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Adaptive Unpacking of Android Apps Symbolic Model Extraction for Web Application Verification On Cross-Stack Configuration Errors Syntactic and Semantic Differencing for Combinatorial Models of Test Designs Fuzzy Fine-Grained Code-History Analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1