尖峰神经网络实现的分层片上网络和流量压缩

Snaider Carrillo, J. Harkin, L. McDaid, S. Pande, Seamus Cawley, Brian McGinley, F. Morgan
{"title":"尖峰神经网络实现的分层片上网络和流量压缩","authors":"Snaider Carrillo, J. Harkin, L. McDaid, S. Pande, Seamus Cawley, Brian McGinley, F. Morgan","doi":"10.1109/NOCS.2012.17","DOIUrl":null,"url":null,"abstract":"The complexity of inter-neuron connectivity is prohibiting scalable hardware implementations of spiking neural networks (SNNs). Traditional neuron interconnect using a shared bus topology is not scalable due to non-linear growth of neuron connections with the neural network size. This paper presents a novel hierarchical NoC (H-NoC) architecture for SNN hardware which addresses the scalability issue by creating a 3-dimensional array of clusters of neurons with a hierarchical structure of low and high-level routers. The H-NoC architecture also incorporates a spike traffic compression technique to exploit SNN traffic patterns, thus reducing traffic overhead and improving throughput on the network. In addition, adaptive routing capabilities between clusters balance local and global traffic loads to sustain throughput under bursting activity. Simulation results show a high throughput per cluster (3.33×109 spikes/second), and synthesis results using 65-nm CMOS technology demonstrate low cost area (0.587mm2) and power consumption (13.16mW @100MHz) for a single cluster of 400 neurons, which outperforms existing SNN hardware strategies.","PeriodicalId":6333,"journal":{"name":"2012 IEEE/ACM Sixth International Symposium on Networks-on-Chip","volume":"136 1","pages":"83-90"},"PeriodicalIF":0.0000,"publicationDate":"2012-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":"{\"title\":\"Hierarchical Network-on-Chip and Traffic Compression for Spiking Neural Network Implementations\",\"authors\":\"Snaider Carrillo, J. Harkin, L. McDaid, S. Pande, Seamus Cawley, Brian McGinley, F. Morgan\",\"doi\":\"10.1109/NOCS.2012.17\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The complexity of inter-neuron connectivity is prohibiting scalable hardware implementations of spiking neural networks (SNNs). Traditional neuron interconnect using a shared bus topology is not scalable due to non-linear growth of neuron connections with the neural network size. This paper presents a novel hierarchical NoC (H-NoC) architecture for SNN hardware which addresses the scalability issue by creating a 3-dimensional array of clusters of neurons with a hierarchical structure of low and high-level routers. The H-NoC architecture also incorporates a spike traffic compression technique to exploit SNN traffic patterns, thus reducing traffic overhead and improving throughput on the network. In addition, adaptive routing capabilities between clusters balance local and global traffic loads to sustain throughput under bursting activity. Simulation results show a high throughput per cluster (3.33×109 spikes/second), and synthesis results using 65-nm CMOS technology demonstrate low cost area (0.587mm2) and power consumption (13.16mW @100MHz) for a single cluster of 400 neurons, which outperforms existing SNN hardware strategies.\",\"PeriodicalId\":6333,\"journal\":{\"name\":\"2012 IEEE/ACM Sixth International Symposium on Networks-on-Chip\",\"volume\":\"136 1\",\"pages\":\"83-90\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"21\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE/ACM Sixth International Symposium on Networks-on-Chip\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NOCS.2012.17\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE/ACM Sixth International Symposium on Networks-on-Chip","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NOCS.2012.17","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

摘要

神经元间连接的复杂性阻碍了尖峰神经网络(snn)的可扩展硬件实现。由于神经元连接随神经网络规模的非线性增长,使用共享总线拓扑的传统神经元互连不具有可扩展性。本文提出了一种新颖的分层NoC (H-NoC) SNN硬件架构,该架构通过创建具有低级和高级路由器分层结构的神经元簇的三维阵列来解决可扩展性问题。H-NoC架构还结合了峰值流量压缩技术来利用SNN流量模式,从而减少流量开销并提高网络上的吞吐量。此外,集群之间的自适应路由功能平衡本地和全局流量负载,以在突发活动下维持吞吐量。仿真结果表明,每个集群的吞吐量高(3.33×109 spikes/second),而使用65纳米CMOS技术的合成结果表明,单个400个神经元集群的成本面积(0.587mm2)和功耗(13.16mW @100MHz)较低,优于现有的SNN硬件策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Hierarchical Network-on-Chip and Traffic Compression for Spiking Neural Network Implementations
The complexity of inter-neuron connectivity is prohibiting scalable hardware implementations of spiking neural networks (SNNs). Traditional neuron interconnect using a shared bus topology is not scalable due to non-linear growth of neuron connections with the neural network size. This paper presents a novel hierarchical NoC (H-NoC) architecture for SNN hardware which addresses the scalability issue by creating a 3-dimensional array of clusters of neurons with a hierarchical structure of low and high-level routers. The H-NoC architecture also incorporates a spike traffic compression technique to exploit SNN traffic patterns, thus reducing traffic overhead and improving throughput on the network. In addition, adaptive routing capabilities between clusters balance local and global traffic loads to sustain throughput under bursting activity. Simulation results show a high throughput per cluster (3.33×109 spikes/second), and synthesis results using 65-nm CMOS technology demonstrate low cost area (0.587mm2) and power consumption (13.16mW @100MHz) for a single cluster of 400 neurons, which outperforms existing SNN hardware strategies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Analytical Performance Modeling of Hierarchical Interconnect Fabrics Fine-Grained Bandwidth Adaptivity in Networks-on-Chip Using Bidirectional Channels Engineering a Bandwidth-Scalable Optical Layer for a 3D Multi-core Processor with Awareness of Layout Constraints An Optimal Control Approach to Power Management for Multi-Voltage and Frequency Islands Multiprocessor Platforms under Highly Variable Workloads A Statically Scheduled Time-Division-Multiplexed Network-on-Chip for Real-Time Systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1