{"title":"通过使用预制装饰地板系统减少碳排放","authors":"Changchun Liu, Yingxi Yang, Xiaolong Zhao, Xing Xu, Jianli Hao, Wenting Ma","doi":"10.3992/jgb.18.1.119","DOIUrl":null,"url":null,"abstract":"\n The construction industry is one of the three largest carbon emitting industries in the world, accounting for up to thirty percent of global greenhouse gas emissions each year. Since traditional cast-in-situ building operations significantly contribute to these emissions and cannot therefore meet green building requirements, prefabricated buildings have come in to their own as a construction method that effectively reduces carbon emissions. Although studies have been conducted in to reducing carbon emissions by using prefabricated techniques at the building construction stage, none have focused on the reduction of carbon emissions by using prefabricated instead of cast-in-situ decoration systems. This study therefore used a case study in China to evaluate the carbon reduction potential of prefabricated decoration floor systems compared with traditional cast-in-situ decoration floor systems, and to also consider the carbon reduction pathways of four different types of prefabricated floor system from the perspectives of work methods and materials. Since the case study results showed that the carbon emissions reduction of the prefabricated floor system was 69.7%, or 101.5 kg CO2e per cubic meter, it can be concluded that there is a significant carbon reduction potential for using a prefabricated decoration floor system compared with a traditional cast-in-situ decoration floor system. The key contribution of the study is that it provides valuable references for interior decoration practitioners and decision makers when considering ways to reduce carbon emissions through prefabricated decoration floor systems.","PeriodicalId":51753,"journal":{"name":"Journal of Green Building","volume":"132 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"REDUCING CARBON EMISSIONS BY USING PREFABRICATED DECORATION FLOOR SYSTEMS\",\"authors\":\"Changchun Liu, Yingxi Yang, Xiaolong Zhao, Xing Xu, Jianli Hao, Wenting Ma\",\"doi\":\"10.3992/jgb.18.1.119\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n The construction industry is one of the three largest carbon emitting industries in the world, accounting for up to thirty percent of global greenhouse gas emissions each year. Since traditional cast-in-situ building operations significantly contribute to these emissions and cannot therefore meet green building requirements, prefabricated buildings have come in to their own as a construction method that effectively reduces carbon emissions. Although studies have been conducted in to reducing carbon emissions by using prefabricated techniques at the building construction stage, none have focused on the reduction of carbon emissions by using prefabricated instead of cast-in-situ decoration systems. This study therefore used a case study in China to evaluate the carbon reduction potential of prefabricated decoration floor systems compared with traditional cast-in-situ decoration floor systems, and to also consider the carbon reduction pathways of four different types of prefabricated floor system from the perspectives of work methods and materials. Since the case study results showed that the carbon emissions reduction of the prefabricated floor system was 69.7%, or 101.5 kg CO2e per cubic meter, it can be concluded that there is a significant carbon reduction potential for using a prefabricated decoration floor system compared with a traditional cast-in-situ decoration floor system. The key contribution of the study is that it provides valuable references for interior decoration practitioners and decision makers when considering ways to reduce carbon emissions through prefabricated decoration floor systems.\",\"PeriodicalId\":51753,\"journal\":{\"name\":\"Journal of Green Building\",\"volume\":\"132 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Green Building\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3992/jgb.18.1.119\",\"RegionNum\":4,\"RegionCategory\":\"艺术学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"0\",\"JCRName\":\"ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Green Building","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3992/jgb.18.1.119","RegionNum":4,"RegionCategory":"艺术学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"ARCHITECTURE","Score":null,"Total":0}
引用次数: 0
摘要
建筑业是世界上最大的三大碳排放行业之一,每年占全球温室气体排放量的30%。由于传统的现浇建筑作业对这些排放有很大贡献,因此不能满足绿色建筑的要求,预制建筑作为一种有效减少碳排放的建筑方法而脱颖而出。虽然在建筑施工阶段通过使用预制技术来减少碳排放的研究已经进行了,但没有人关注通过使用预制而不是现浇装饰系统来减少碳排放。因此,本研究以中国为例,对比传统现浇装饰地坪系统,评估了预制地坪系统的减碳潜力,并从工作方法和材料的角度考虑了四种不同类型的预制地坪系统的减碳途径。由于案例研究结果表明,预制地板系统的碳排放量减少了69.7%,即每立方米101.5 kg CO2e,因此可以得出结论,与传统的现浇装饰地板系统相比,使用预制装饰地板系统具有显着的碳减排潜力。本研究的主要贡献在于为室内装饰从业者和决策者在考虑如何通过预制装饰地板系统减少碳排放提供了有价值的参考。
REDUCING CARBON EMISSIONS BY USING PREFABRICATED DECORATION FLOOR SYSTEMS
The construction industry is one of the three largest carbon emitting industries in the world, accounting for up to thirty percent of global greenhouse gas emissions each year. Since traditional cast-in-situ building operations significantly contribute to these emissions and cannot therefore meet green building requirements, prefabricated buildings have come in to their own as a construction method that effectively reduces carbon emissions. Although studies have been conducted in to reducing carbon emissions by using prefabricated techniques at the building construction stage, none have focused on the reduction of carbon emissions by using prefabricated instead of cast-in-situ decoration systems. This study therefore used a case study in China to evaluate the carbon reduction potential of prefabricated decoration floor systems compared with traditional cast-in-situ decoration floor systems, and to also consider the carbon reduction pathways of four different types of prefabricated floor system from the perspectives of work methods and materials. Since the case study results showed that the carbon emissions reduction of the prefabricated floor system was 69.7%, or 101.5 kg CO2e per cubic meter, it can be concluded that there is a significant carbon reduction potential for using a prefabricated decoration floor system compared with a traditional cast-in-situ decoration floor system. The key contribution of the study is that it provides valuable references for interior decoration practitioners and decision makers when considering ways to reduce carbon emissions through prefabricated decoration floor systems.
期刊介绍:
The purpose of the Journal of Green Building is to present the very best peer-reviewed research in green building design, construction, engineering, technological innovation, facilities management, building information modeling, and community and urban planning. The Research section of the Journal of Green Building publishes peer-reviewed articles in the fields of engineering, architecture, construction, construction management, building science, facilities management, landscape architecture, interior design, urban and community planning, and all disciplines related to the built environment. In addition, the Journal of Green Building offers the following sections: Industry Corner that offers applied articles of successfully completed sustainable buildings and landscapes; New Directions in Teaching and Research that offers guidance from teachers and researchers on incorporating innovative sustainable learning into the curriculum or the likely directions of future research; and Campus Sustainability that offers articles from programs dedicated to greening the university campus.