{"title":"基于滤波的锂离子电池电量状态估计算法的比较研究","authors":"Yong Tian, Zhibing Zeng, Lijuan Xiang, Xiaoyu Li, Jindong Tian","doi":"10.12783/dteees/iceee2019/31820","DOIUrl":null,"url":null,"abstract":"Accurate estimation of state of charge (SOC) is greatly crucial for safely and reliably charging and discharging the lithium-ion batteries, especially for those used in electric vehicles (EVs). Currently, a lot of algorithms have been proposed to estimate the battery SOC. In this paper, we compared four filter-based algorithms, including the standard particle filter (PF), the unscented Kalman filter, the unscented Kalman-particle filter (UPF), and the extended Kalman-particle filter (EPF), in terms of the estimate accuracy and convergence rate. The federal urban driving schedule (FUDS) and the urban dynamometer driving schedule (UDDS) were applied to evaluate the performance of these estimation algorithms. Comparison results showed that compared with the UKF, the PF can improve the estimate accuracy, however, it takes much more time to correct the initial SOC error. By introducing the EKF and UKF into the particle filter, the convergence rate can be greatly improved without the decrease in estimate accuracy, and convergence rate is very close to that of the UKF.","PeriodicalId":11324,"journal":{"name":"DEStech Transactions on Environment, Energy and Earth Sciences","volume":"36 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparative Study of Four Filter-based Algorithms for State-of-charge Estimation of Lithium-ion Batteries\",\"authors\":\"Yong Tian, Zhibing Zeng, Lijuan Xiang, Xiaoyu Li, Jindong Tian\",\"doi\":\"10.12783/dteees/iceee2019/31820\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Accurate estimation of state of charge (SOC) is greatly crucial for safely and reliably charging and discharging the lithium-ion batteries, especially for those used in electric vehicles (EVs). Currently, a lot of algorithms have been proposed to estimate the battery SOC. In this paper, we compared four filter-based algorithms, including the standard particle filter (PF), the unscented Kalman filter, the unscented Kalman-particle filter (UPF), and the extended Kalman-particle filter (EPF), in terms of the estimate accuracy and convergence rate. The federal urban driving schedule (FUDS) and the urban dynamometer driving schedule (UDDS) were applied to evaluate the performance of these estimation algorithms. Comparison results showed that compared with the UKF, the PF can improve the estimate accuracy, however, it takes much more time to correct the initial SOC error. By introducing the EKF and UKF into the particle filter, the convergence rate can be greatly improved without the decrease in estimate accuracy, and convergence rate is very close to that of the UKF.\",\"PeriodicalId\":11324,\"journal\":{\"name\":\"DEStech Transactions on Environment, Energy and Earth Sciences\",\"volume\":\"36 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"DEStech Transactions on Environment, Energy and Earth Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12783/dteees/iceee2019/31820\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"DEStech Transactions on Environment, Energy and Earth Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12783/dteees/iceee2019/31820","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Comparative Study of Four Filter-based Algorithms for State-of-charge Estimation of Lithium-ion Batteries
Accurate estimation of state of charge (SOC) is greatly crucial for safely and reliably charging and discharging the lithium-ion batteries, especially for those used in electric vehicles (EVs). Currently, a lot of algorithms have been proposed to estimate the battery SOC. In this paper, we compared four filter-based algorithms, including the standard particle filter (PF), the unscented Kalman filter, the unscented Kalman-particle filter (UPF), and the extended Kalman-particle filter (EPF), in terms of the estimate accuracy and convergence rate. The federal urban driving schedule (FUDS) and the urban dynamometer driving schedule (UDDS) were applied to evaluate the performance of these estimation algorithms. Comparison results showed that compared with the UKF, the PF can improve the estimate accuracy, however, it takes much more time to correct the initial SOC error. By introducing the EKF and UKF into the particle filter, the convergence rate can be greatly improved without the decrease in estimate accuracy, and convergence rate is very close to that of the UKF.