{"title":"一个使用神奇更新技术优化连续查询的案例研究","authors":"Andreas Behrend, Gereon Schüller","doi":"10.1145/2618243.2618285","DOIUrl":null,"url":null,"abstract":"The evaluation of continuous queries over data streams often becomes difficult as soon as static context data must be combined with dynamic stream data. This is especially the case if the context data is organized in form of view hierarchies and thus computed from some base facts. In this scenario, typical algebraic optimization strategies fail in providing a well-optimized query evaluation plan which effectively combines the stream and classical view subparts of the given query. The Magic Update method represents a possible solution to this problem as it allows for dynamically generating new selection conditions from the data stream which are pushed into the view hierarchy of context data. In this paper we present a case study in which the performance gain of this technique is shown when optimizing anomaly detection views in an air-traffic surveillance scenario.","PeriodicalId":74773,"journal":{"name":"Scientific and statistical database management : International Conference, SSDBM ... : proceedings. International Conference on Scientific and Statistical Database Management","volume":"27 1","pages":"31:1-31:4"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"A case study in optimizing continuous queries using the magic update technique\",\"authors\":\"Andreas Behrend, Gereon Schüller\",\"doi\":\"10.1145/2618243.2618285\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The evaluation of continuous queries over data streams often becomes difficult as soon as static context data must be combined with dynamic stream data. This is especially the case if the context data is organized in form of view hierarchies and thus computed from some base facts. In this scenario, typical algebraic optimization strategies fail in providing a well-optimized query evaluation plan which effectively combines the stream and classical view subparts of the given query. The Magic Update method represents a possible solution to this problem as it allows for dynamically generating new selection conditions from the data stream which are pushed into the view hierarchy of context data. In this paper we present a case study in which the performance gain of this technique is shown when optimizing anomaly detection views in an air-traffic surveillance scenario.\",\"PeriodicalId\":74773,\"journal\":{\"name\":\"Scientific and statistical database management : International Conference, SSDBM ... : proceedings. International Conference on Scientific and Statistical Database Management\",\"volume\":\"27 1\",\"pages\":\"31:1-31:4\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific and statistical database management : International Conference, SSDBM ... : proceedings. International Conference on Scientific and Statistical Database Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2618243.2618285\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific and statistical database management : International Conference, SSDBM ... : proceedings. International Conference on Scientific and Statistical Database Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2618243.2618285","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

一旦静态上下文数据必须与动态流数据相结合,对数据流上的连续查询的评估就会变得困难。如果上下文数据以视图层次结构的形式组织,从而根据一些基本事实计算,则尤其如此。在这种情况下,典型的代数优化策略无法提供优化良好的查询评估计划,该计划无法有效地将给定查询的流和经典视图子部分结合起来。Magic Update方法代表了这个问题的一种可能的解决方案,因为它允许从数据流动态生成新的选择条件,这些选择条件被推送到上下文数据的视图层次结构中。在本文中,我们提出了一个案例研究,在优化空中交通监视场景中的异常检测视图时,显示了该技术的性能增益。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A case study in optimizing continuous queries using the magic update technique
The evaluation of continuous queries over data streams often becomes difficult as soon as static context data must be combined with dynamic stream data. This is especially the case if the context data is organized in form of view hierarchies and thus computed from some base facts. In this scenario, typical algebraic optimization strategies fail in providing a well-optimized query evaluation plan which effectively combines the stream and classical view subparts of the given query. The Magic Update method represents a possible solution to this problem as it allows for dynamically generating new selection conditions from the data stream which are pushed into the view hierarchy of context data. In this paper we present a case study in which the performance gain of this technique is shown when optimizing anomaly detection views in an air-traffic surveillance scenario.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Towards Co-Evolution of Data-Centric Ecosystems. Data perturbation for outlier detection ensembles SLACID - sparse linear algebra in a column-oriented in-memory database system SensorBench: benchmarking approaches to processing wireless sensor network data Efficient data management and statistics with zero-copy integration
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1