S. Neelakandan, Li Wang, Boping Zhang, Jiangpeng Ni, Meishao Hu, Chunmei Gao, Wai-Yeung Wong, Lei Wang
{"title":"支链高分子材料在燃料电池质子交换膜中的应用","authors":"S. Neelakandan, Li Wang, Boping Zhang, Jiangpeng Ni, Meishao Hu, Chunmei Gao, Wai-Yeung Wong, Lei Wang","doi":"10.1080/15583724.2021.1964524","DOIUrl":null,"url":null,"abstract":"Abstract Recent progress on branched polymer membranes as electrolyte materials for proton exchange membrane fuel cell (PEMFC) applications has attracted interest due to the limitations of commercially available Nafion® membranes. Branched polymer membranes have shown improved chemical stability, proton conductivity, and good solubility. The branching degree and the structure of the branching agent have an essential correlation with the characteristics of the polymer membranes. This review presents the most recent and promising design strategies and characteristics of branched polymers as proton exchange membranes for both low- and high-temperature proton exchange membrane fuel cells. Recent advances in branched polymers are summarized, including branched sulfonated poly(aryl ether)s, branched sulfonated polyimides, branched polybenzimidazoles, etc. The remaining challenges and prospects in proton exchange membranes are also discussed.","PeriodicalId":20326,"journal":{"name":"Polymer Reviews","volume":"272 1","pages":"261 - 295"},"PeriodicalIF":11.1000,"publicationDate":"2021-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":"{\"title\":\"Branched Polymer Materials as Proton Exchange Membranes for Fuel Cell Applications\",\"authors\":\"S. Neelakandan, Li Wang, Boping Zhang, Jiangpeng Ni, Meishao Hu, Chunmei Gao, Wai-Yeung Wong, Lei Wang\",\"doi\":\"10.1080/15583724.2021.1964524\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Recent progress on branched polymer membranes as electrolyte materials for proton exchange membrane fuel cell (PEMFC) applications has attracted interest due to the limitations of commercially available Nafion® membranes. Branched polymer membranes have shown improved chemical stability, proton conductivity, and good solubility. The branching degree and the structure of the branching agent have an essential correlation with the characteristics of the polymer membranes. This review presents the most recent and promising design strategies and characteristics of branched polymers as proton exchange membranes for both low- and high-temperature proton exchange membrane fuel cells. Recent advances in branched polymers are summarized, including branched sulfonated poly(aryl ether)s, branched sulfonated polyimides, branched polybenzimidazoles, etc. The remaining challenges and prospects in proton exchange membranes are also discussed.\",\"PeriodicalId\":20326,\"journal\":{\"name\":\"Polymer Reviews\",\"volume\":\"272 1\",\"pages\":\"261 - 295\"},\"PeriodicalIF\":11.1000,\"publicationDate\":\"2021-08-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"25\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Polymer Reviews\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1080/15583724.2021.1964524\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer Reviews","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1080/15583724.2021.1964524","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
Branched Polymer Materials as Proton Exchange Membranes for Fuel Cell Applications
Abstract Recent progress on branched polymer membranes as electrolyte materials for proton exchange membrane fuel cell (PEMFC) applications has attracted interest due to the limitations of commercially available Nafion® membranes. Branched polymer membranes have shown improved chemical stability, proton conductivity, and good solubility. The branching degree and the structure of the branching agent have an essential correlation with the characteristics of the polymer membranes. This review presents the most recent and promising design strategies and characteristics of branched polymers as proton exchange membranes for both low- and high-temperature proton exchange membrane fuel cells. Recent advances in branched polymers are summarized, including branched sulfonated poly(aryl ether)s, branched sulfonated polyimides, branched polybenzimidazoles, etc. The remaining challenges and prospects in proton exchange membranes are also discussed.
期刊介绍:
Polymer Reviews is a reputable publication that focuses on timely issues within the field of macromolecular science and engineering. The journal features high-quality reviews that have been specifically curated by experts in the field. Topics of particular importance include biomedical applications, organic electronics and photonics, nanostructures, micro- and nano-fabrication, biological molecules (such as DNA, proteins, and carbohydrates), polymers for renewable energy and environmental applications, and interdisciplinary intersections involving polymers.
The articles in Polymer Reviews fall into two main categories. Some articles offer comprehensive and expansive overviews of a particular subject, while others zero in on the author's own research and situate it within the broader scientific landscape. In both types of articles, the aim is to provide readers with valuable insights and advancements in the field of macromolecular science and engineering.